
Software
Best Practice for R : : CHEAT SHEET

CC BY SA Jacob Scott • github.com/wurli • Updated: 2023-11

Use r-lib packages like {rlang}, {cli}
& {glue} for low-level programming

Styling

Learning More

Don't Do

Post screenshots
of your code

Use reprex::reprex() and
paste your code as text

Include big files
Use dput() or
tibble::tribble() to include
a data sample

Ignore messages
or warnings

Ensure your code only
fails where you're
expecting it to

Write code in the RStudio IDE

Use git to version-control your
code and analysis
Use GitHub to collaborate with
other people

Packages

Use the tidyverse for normal
wrangling, plotting etc

Use tidymodels for modelling and
machine learning

Use {shiny}, {bslib} and
{bs4Dash} for app developmentProjects

• Create a new project in RStudio using  
File > New Project > New Directory

• Do put projects in a single, local folder like 
C:\Users\your-name\Documents

• Don't put projects in locations controlled by
OneDrive / iCloud (these don’t play well with
Git)

PROJECT CREATION

PROJECT STRUCTURE

my-project/

.gitignore

.gitignore tells git which
files not to track

Scripts in R/ should
define functions for
use elsewhere

Records of package
versions; created using
renv::init()

Use a top-level R
script to run everything

A .Rproj file
makes this
directory an
RStudio projectWrite the main facts

about the project here

R/

01-import.R

02-tidy.R

SQL/

run-all.R

my-project.Rproj

README.md

Most projects should be structured like this:

Packages should be loaded in one place with
successive calls to library()

GitHub stars are a good proxy for a package's
quality. Not sure whether to use a package? If
it has >200 stars on GitHub it's probably good!

Getting Help
• A minimal, reproducible example should

demonstrate the issue as simply as possible
• Copy your example code and run

reprex::reprex() to embed errors/
messages/outputs as comments

• Use your reprex in a question on Teams or
Stackoverflow

print("Hello " + "world!")
#> Error in "Hello " + "world!": non-
numeric argument to binary operator

CREATE A REPREX

This reprex minimally demonstrates an
error when attempting to use + for
Python-style string concatenation

ETIQUETTE WHEN ASKING QUESTIONS

NAMING THINGS
• Use lower_snake_case for most objects

(functions, variables etc)
• Title_Snake_Case may be used for column

names
• Use only syntactic names where possible

(include only numbers, letters, underscores
and periods, and don't start with a number)

Good (lower_snake_case everywhere):
add1 <- function(x) x + 1
first_letters <- letters[1:3]
iris_sample <- slice_sample(iris, n = 5)
 

Bad (non-syntactic, not lower_snake_case):
`add 1` <- function(x) x + 1
FirstLetters <- letters[1:3]
iris.sample <- slice_sample(iris, n = 5)

WHITESPACE
• Add spaces after commas and around

operators like |>, %>%, +, -, *, /, = and <-
• Indentation increases should always be by

exactly 2 spaces
• Add linebreaks when lines get longer  

than 80 characters.
• When there are many arguments in a call,

give each argument its own line (including
the first one!)

Good (lots of spaces, indents always by +2):
df <- iris |>
 mutate(
 Sepal.Area = Sepal.Width * Sepal.Length,
 Petal.Area = Petal.Width * Petal.Length
)
 

Bad (inconsistent spacing and indentation):
df<-iris |>
 mutate(Sepal.Area=Sepal.Width*Sepal.Length,
 Petal.Area=Petal.Width*Petal.Length)

Databases

For other styling guidance, refer to the Tidyverse style guide

• Use {DBI} and {odbc} to connect to SQL
• Use helper functions to create connections

a <-
b <-
c <-
d <-

complex operation on a
complex operation on b
complex operation on c
complex operation on d

 <- function(x) {
 
}

complex operation on x
operate_on

operate_on
operate_on
operate_on
operate_on

a <- (a)
b <- (b)
c <- (c)
d <- (d)

1. Repetitive, complex
code; purpose
clarified by
comments

2. Complex logic
abstracted into
functions

3. Repetition
reduced; clearer
code; less need for
comments

Functions
• Write functions to reduce repetition or

increase clarity
• Write many small functions that call

each other
• Define functions in dedicated

scripts with corresponding names

WRITING FUNCTIONS: WORKFLOW

✗ Bad (noun-like) ✓ Good (verb-like)
totals_getter() compute_totals()

modeller_func() fit_model()

project_data() import_datasets()

NAMING CONVENTIONS

connect_to_db <- function(db) {
 DBI::dbConnect(
 odbc::odbc(), Database = db,
 # Hard-code common options here
)
}

Connect using the helper
con <- connect_to_db(“DWH")

• For common data science tasks,
see R for Data Science (2e)

• For package development,  
see R Packages (2e)

• For advanced programming, 
see Advanced R (2e)

• For app development, 
see Mastering Shiny

NB, usethis::use_description() +
usethis::use_namespace() will
turn this structure into a package!

renv/

renv.lock

Use folders SQL/,
data/ etc for other file
types

costs.sql

Use {renv} in long-term projects to
track dependency packages

.Rprofile
R code to run on
startup

Use quarto for literate
programming

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/DfE-R-Community
https://github.com/r-lib
https://www.tidyverse.org/
https://www.tidymodels.org/
https://stackoverflow.com/help/minimal-reproducible-example
https://style.tidyverse.org/
https://style.tidyverse.org/
https://r4ds.hadley.nz/
https://r-pkgs.org/
https://adv-r.hadley.nz/
https://mastering-shiny.org/

