survey data analysis with Srvyr : : CHEAT SHEET (1 of 2)

Describing the Survey Design Replicate Weights

To properly analyze survey data, create a survey design object. This object contains the data, weights, and other metadata used for analysis. An alternative t? creating asurvey design 0bllec.t is
design <- as_survey design(to create a replicate design object, using replicate
.data = my data_frame, weights provided on the input dataset.
ids = _, (Required) - Variable(s) identifying sampling units (sometimes called “clusters”) design <- as_survey_rep(
strata = _, (Optional) -Variable(s)identifying sampling strata .data = my_data_frame,
fpc = _, (Optional) -Variable(s)in the data giving population sizes or sampling fractions for each stratum. weights = _,
probs = _, (Optional) -Variable(s)in the data giving sampling probabilities for each sampling unit repweights = _,
weights = _, (Optional) -Avariablein the data listing the sampling weight for each observation in the data type = _,
) mse = _
FOR MULTISTAGE SAMPLES: List one variable for each stage of sampling: e.g., c(SCHOOL, STUDENT).Only applies to ids, strata, fpc, and probs.)
EXAMPLE DATA: Stratified Cluster Sample EXAMPLE DATA: Multistage Sample ARGUMENTS
Survey of students: data includes every student in four sampled schools, Survey of students: data includes a sample of students in four sampled + weights: The variable name of the full-sample weights
where two schools were selected in each of two school districts schools, where two schools were selected in each of two school districts . repweights: The variable names of the replicate weights.
Obs | DISTRICT SCHOOL SCHOOL_PROB DISTRICT_SIZE WEIGHT Obs DISTRICT SCHOOL STUDENT DISTRICT_SIZE SCHOOL_SIZE WEIGHT Some useful helper functions for listing them are:
1 District 1 School 1 0.40 5 2.5 1 District 1 School1l Student1 4 100 100 _ num_range(“REP_WGT”, 1:80)
2 District 1 School 1 0.40 5 25 2 District 1 Schooll Student2 4 100 100 sk »
3 pistrict 1 [ISchool2l 0.40 5 25 3 Districtl [JSEAG0IZN Student3 4 150 150 - starts_with(“REP_WGT”)
4 District1 [School2] 0.40 5 25 4 District1 [School 20 [Stlidental 4 150 150 - type: The replication meEhod uied to crez?’te the replicate
5 [District2 School 3 0.20 10 5.0 5 | District2 | School3 Student5 10 200 500]ylve'gg!f,s (e.g., b°°t5tra}; , “JKL ’“O'th'?,R)-dFor more
6 District2 School 3 0.20 10 5.0 6 District2 School3 ' Student6 10 200 500 €xibl 'tyt’ you cfrl,szcLy ty;l)e . (Ot frr] ?«2 ulseFt i ,
7 District2 [School4| 0.20 10 0 7 District2 ['School4’ | Student. 55 250 — arguments “scale” and “rscales” (see the “Scale Factors
— o section below).
8 District2 | School4 | 0.20 10 5.0 8 District2 [School4 |[Silidentel 10 250 625)
desi desi desi desi + mse: Use TRUE to compute variances based on sum of
esign <- as_fur‘vey_ esign(es(ljgn <= as_fur‘vcﬁy_leugn(dat squares around the full-sample estimate; use FALSE to use
:data = school_survey_data, : ata = Schoo.l_survey_data, squares around the mean of the replicate estimates
ids = SCHOOL, ids = c(SCHOOL, STUDENT),) ‘
strata = DISTRICT, strata = c(DISTRICT, SCHOOL), « degf: (Optionally) Specify the degrees of freedom
'Fpt.: = DISTRICT_SIZE, 'ch = c(DISTRICT_SIZE, SCHOOL_SIZE), EXAMPLE CODE
weights = WEIGHT weights = WEIGHT <
)) design <- as_survey_rep(
.data = my_data_frame,
TIPS FOR CREATING A DESIGN OBJECT DEALING WITH “LONELY PSUS” options("survey.lonely.psu” = “fail”) weights = FULL_SAMP|(-E_WGT,)
oo - A » : ; : : : - repweights = num_range(“REP_WGT”, 1:50),
« Ifeach observation in the data is its own A “lonely PSU”is a lsampllng unit that IS.the Throw an error message if there are any lonely PSUs type = “bootstrap”,
sampling unit, then use ids = NULL only sampling unit in its stratum (sometimes . ’ = TRUE
i analvai ,l bset of the dat . referred to as a “singleton stratum”). options("survey.lonely.psu” = “adjust™)) mse =
« Ifanalyzing only a subset of the data, create)) L . .
tha deysi ngob'eyct first with ALL the data. then| * This can be a problem for variance estimation. This option assumes that the lonely PSU comes from a
8)€ :] ! , « » : stratum whose average is the same as the average PSU.
subset the design object using filter() You can use the “survey.lonely.psu” option to SCALE FACTORS
. Ifthe weights argument isn’t used, then address this problem. options(“survey.lonely.psu” = “average”) All replication types use the same formula for variances,
weights will automatically be crea,ted based | * When analyzing subsets of data (i.e., This option assumes that the lonely PSU contributes to the | involving scale factors named scale and rscales. Those factors
on the probs argument (if available) or the “domains”), this option can be applied to variance the same as the average stratum. are determined automatically unless type = “other” or
foc argument (if probs s unavailable) subsets with only one PSU by setting the options(“survey.lonely.psu” = “remove”) “JKn”, in which case the following arguments can be used:
foHo_vvmg 9pt|on to TRUE: . «y lgnore the lonely PSU when estimating variances. « scale: Overall scale factor
options("survey.adjust.domain.lonely")

« rscales: Replicate-specific scale factors

B 1. Create a database connection library(DBI)
Database baCked Surveys using the DBI package. library(dplyr) m R
For large datasets, you can keepyourdataina 2. Use the dplyr function tbl(), to refer V(g) 1 a (9 _ é)z
database table, only loading data into R as- to a specific table in the database | db_conn <- dbConnect([dbdriver],..) - T AU
needed. To read more about database-backed 3. Use the table for the .data r=1
surveys, see the srvyr vignette “Databases in argument of as_survey_design() or | tbl(db_conn, “TABLE_NAME”) |> if mse=FALSE, 1
sruyr”. as_survey_rep)) as_survey design(...) this is replaced by the average:

CC by SA Greg Freedman Ellis and Ben Schneider« Learn more at http://gdfe.co/srvyr/ « package version 1.3.0 » Updated: 2025-01

survey data analysis with Srvyr : : CHEAT SHEET (2 of 2)

After creating a survey design object with srvyr, you can manipulate data and compute summaries using dplyr verbs such as filter() or summarize().
srvyr provides specialized statistical summary functions to calculate weighted estimates along with standard errors and confidence intervals.

Manipulating Data Statistical Summary Functions
filter(data, ..., preserve=FALSE) These functions are used withinthe dplyr functions STANDARD ERRORS AND CONFIDENCE INTERVALS
-> Extract rows that meet logical criteria.

summarize() and mutate(), r@z‘turnjng an estimate and its Every statistical summary function includes a vartype argument
design |> filter(AGE >= 16, AGE <= 65) standard error (with the suffix “_se”) which can be used to request one or more of the following

measures of sampling variation.

Example .
B mutate(.dats,...) P design |>

-»> Compute new column(s). Code group_by(region) |>
summarize(pop_size = survey_total(),
mean_age = survey_mean(AGE))

“var”: The sampling variance

“se”: The standard error (included by default)

“cv”: The coefficient of variation

“ci”: A confidence interval, with confidence level controlled

design |> mutate(BMI=WGT/HEIGHT)

o _ e . by the level argument
S ummarizin g F un Ct| ons Example [region pop_size pop_size_se mean_age mean_age_se y &
Output North 15,342,875 25,410 46 12| Example Code
Apply summary functions to columns to create a new table of South 5861942 37.902 44 1.1
summary statistics. Summary functions take vectors as input — ’ design |>
and return one valut? (see back). survey_total(.data, x) summarize(
B summarize(.data,...)) age = survey_mean(AGE, vartype = c(“se”, “ci”), level = 0.95)
- Compute table of summaries. Estimate the population total, either for a numericvariable x)
or—if x is unspecified—for the current group.

design |> summarise(mean_age = survey_mean(AGE))
survey_mean(.data, X, ..., .preserve = FALSE)

t(.data, ..., sort=FALSE, =NULL : . i
-»> R suv';l‘:e?gﬁtc;ju:otgntas aand stsaondard errorQ?on:gach) Estimate the population mean. P ro p O rt lons an d Pe rcen ta ges
group defined by thevariablesin survey_mean(.data, x, proportion = TRUE, prop_method = “logit”) For a grouped dataset, you can estimate each group’s

roportion of the total population by using survey_prop().
survey_count(mcars, cy) Estimatea proportion if x is a binary variable with values 0 and prop pop yusing y-prop()

loralogicalvariable.

G rou | N C ases) . . survey_prop(.data, ..., prop_method = “logit”)

p g X can be an expressionsuchas " AGE>25 By default, if there are multiple grouping variables, x and y, then
Use groug_by(.data, ...) to create a "grouped" copy of a table Use the prop_method argument to choose a specialized the result will be proportions of y within categories of x.
grouped by columnsiin ... method for computing confidenceintervals.

The interact() function can be used to obtain proportions for

dplyr and srvyr functions will manipulate each "group" separately ~survey_median(.data, x) combinations of variables.
and combine'the results.

TIP: Grouped operations work with * summarize()’ Estimate the population median. Nested Proportions: Proportion of one variable within another
e . < & 3 ’ . oo
mutate() , and " filter() survey_quantile(.data, x, quantiles=0.5) design > region agree prop prop_se
design Estimate population quantiles such as the median or quartiles. group_by(region, agree) |> North Yes 09 001
u grogup_by(REGION) |~ survey_sd(.data,x) summarize(prop = survey_prop()) North No 01 001
> - n S“Qergﬁr_'éeg(ez survey_mean(AGE) Estimate the population standard deviation of a variable. South Yes 05 005
survey_var(.data,x) South No 05 005
Estimate the population variance of a variable. Cross-classified Proportions: Proportions of combinations of variables

CO l umn-w | se O pe ra t| ons survey_ratio(.data, numerator, denominator) design |> region agree prop prop_se
Use functions from dplyr such as * across()* to apply summaries Estimate the ratio of population means for two variables. group_by(interact(region, agree)) |> | |North Yes 0675 001
to multiple columns. survey_corr(.data, x,) summarize(prop = survey_prop()) North No 0075 001
- o South Yes 0125 0.05
Example: design |> summarise(across(is.numeric, survey_mean)) Estimate the population correlation between two variables. South No 0125 005

Read more about column-wise functions from dplyr here:
https://dplyr.tidyverse.org/articles/colwise.html

CC by SA Greg Freedman Ellis and Ben Schneider « Learn more at http://gdfe.co/srvyr/ - package version 1.3.0 « Updated: 2025-01

