
Describing the Survey Design
survey data analysis with srvyr : : CHEAT SHEET (1 of 2)

CC by SA Greg Freedman Ellis and Ben Schneider • Learn more at http://gdfe.co/srvyr/ • package version 1.3.0 • Updated: 2025-01

To properly analyze survey data, create a survey design object. This object contains the data, weights, and other metadata used for analysis.
design <- as_survey_design(

.data = my_data_frame,
ids = _, (Required)
strata = _, (Optional)
fpc = _, (Optional)
probs = _, (Optional)
weights = _, (Optional)

)

- Variable(s) identifying sampling units (sometimes called “clusters”)
- Variable(s) identifying sampling strata
- Variable(s) in the data giving population sizes or sampling fractions for each stratum.
- Variable(s) in the data giving sampling probabilities for each sampling unit
- A variable in the data listing the sampling weight for each observation in the data

Replicate Weights
An alternative to creating a survey design object is
to create a replicate design object, using replicate
weights provided on the input dataset.

• If each observation in the data is its own
sampling unit, then use ids = NULL

• If analyzing only a subset of the data, create
the design object first with ALL the data, then
subset the design object using filter()

• If the weights argument isn’t used, then
weights will automatically be created based
on the probs argument (if available) or the
fpc argument (if probs is unavailable)

TIPS FOR CREATING A DESIGN OBJECT

WEIGHTDISTRICT_SIZESCHOOL_PROBSCHOOLDISTRICTObs
2.550.40School 1District 11
2.550.40School 1District 12
2.550.40School 2District 13
2.550.40School 2District 14
5.0100.20School 3District 25
5.0100.20School 3District 26
5.0100.20School 4District 27
5.0100.20School 4District 28

EXAMPLE DATA: Stratified Cluster Sample

design <- as_survey_design(
.data = school_survey_data,
ids = SCHOOL,
strata = DISTRICT,
fpc = DISTRICT_SIZE,
weights = WEIGHT

)

Survey of students: data includes every student in four sampled schools,
where two schools were selected in each of two school districts

WEIGHTSCHOOL_SIZEDISTRICT_SIZESTUDENTSCHOOLDISTRICTObs
1001004Student 1School 1District 11
1001004Student 2School 1District 12
1501504Student 3School 2District 13
1501504Student 4School 2District 14
50020010Student 5School 3District 25
50020010Student 6School 3District 26
62525010Student 7School 4District 27
62525010Student 8School 4District 28

EXAMPLE DATA: Multistage Sample
Survey of students: data includes a sample of students in four sampled
schools, where two schools were selected in each of two school districts

design <- as_survey_design(
.data = school_survey_data,
ids = c(SCHOOL, STUDENT),
strata = c(DISTRICT, SCHOOL),
fpc = c(DISTRICT_SIZE, SCHOOL_SIZE),
weights = WEIGHT

)

FOR MULTISTAGE SAMPLES: List one variable for each stage of sampling: e.g., c(SCHOOL, STUDENT). Only applies to ids, strata, fpc, and probs.

design <- as_survey_rep(
.data = my_data_frame,
weights = _,
repweights = _,
type = _,
mse = _

)

• weights: The variable name of the full-sample weights
• repweights: The variable names of the replicate weights.

Some useful helper functions for listing them are:
- num_range(“REP_WGT”, 1:80)
- starts_with(“REP_WGT”)

• type: The replication method used to create the replicate
weights (e.g., “bootstrap”, “JK1”, or “BRR”). For more
flexibility, you can specify type = “other” and use the
arguments “scale” and “rscales” (see the “Scale Factors”
section below).

• mse: Use TRUE to compute variances based on sum of
squares around the full-sample estimate; use FALSE to use
squares around the mean of the replicate estimates

• degf: (Optionally) Specify the degrees of freedom

ARGUMENTS

Database-backed Surveys
For large datasets, you can keep your data in a
database table, only loading data into R as-
needed. To read more about database-backed
surveys, see the srvyr vignette “Databases in
srvyr”.

SCALE FACTORS
All replication types use the same formula for variances,
involving scale factors named scale and rscales. Those factors
are determined automatically unless type = “other” or
“JKn”, in which case the following arguments can be used:
• scale: Overall scale factor
• rscales: Replicate-specific scale factors

V 𝜃෠ = 𝐴 ෍ 𝑎௥ 𝜃෠௥ − 𝜃෠
ଶ

ோ

௥ୀଵ

scalescale rscalesrscaleslibrary(DBI)
library(dplyr)

db_conn <- dbConnect([dbdriver],…)

tbl(db_conn, “TABLE_NAME”) |>
as_survey_design(…)

1. Create a database connection
using the DBI package.

2. Use the dplyr function tbl(), to refer
to a specific table in the database

3. Use the table for the .data
argument of as_survey_design() or
as_survey_rep()

if mse=FALSE,
this is replaced by the average:
if mse=FALSE,
this is replaced by the average:

𝟏

𝑹
∑ 𝜽෡𝒓

𝑹
𝒓ୀ𝟏

• A “lonely PSU” is a sampling unit that is the
only sampling unit in its stratum (sometimes
referred to as a “singleton stratum”).

• This can be a problem for variance estimation.
You can use the “survey.lonely.psu” option to
address this problem.

• When analyzing subsets of data (i.e.,
“domains”), this option can be applied to
subsets with only one PSU by setting the
following option to TRUE:
options("survey.adjust.domain.lonely")

DEALING WITH “LONELY PSUS” options("survey.lonely.psu” = “fail”)

Throw an error message if there are any lonely PSUs
options("survey.lonely.psu” = “adjust”)

This option assumes that the lonely PSU comes from a
stratum whose average is the same as the average PSU.
options(“survey.lonely.psu” = “average”)

This option assumes that the lonely PSU contributes to the
variance the same as the average stratum.
options(“survey.lonely.psu” = “remove”)

Ignore the lonely PSU when estimating variances.

design <- as_survey_rep(
.data = my_data_frame,
weights = FULL_SAMPLE_WGT,
repweights = num_range(“REP_WGT”, 1:50),
type = “bootstrap”,
mse = TRUE

)

EXAMPLE CODE

CC by SA Greg Freedman Ellis and Ben Schneider • Learn more at http://gdfe.co/srvyr/ • package version 1.3.0 • Updated: 2025-01

survey data analysis with srvyr : : CHEAT SHEET (2 of 2)

Summarizing Functions

Manipulating Data
filter(.data, …, .preserve = FALSE)

Extract rows that meet logical criteria.

design |> filter(AGE >= 16, AGE <= 65)

mutate(.data, …)
Compute new column(s).

design |> mutate(BMI = WGT/HEIGHT)

Use group_by(.data, …) to create a "grouped" copy of a table
grouped by columns in ...

dplyr and srvyr functions will manipulate each "group" separately
and combine the results.

TIP: Grouped operations work with `summarize()`,
`mutate()`, and `filter()`

Apply summary functions to columns to create a new table of
summary statistics. Summary functions take vectors as input
and return one value (see back).

summarize(.data, …)
Compute table of summaries.

design |> summarise(mean_age = survey_mean(AGE))

survey_count(.data, …, sort = FALSE, name = NULL)
Weighted counts and standard errors for each
group defined by the variables in …

survey_count(mtcars, cyl)

design |>
group_by(REGION) |>
summarize(

mean_age = survey_mean(AGE)
)

Grouping Cases

Statistical Summary Functions

survey_total(.data, x)

Estimate the population total, either for a numeric variable x
or—if x is unspecified—for the current group.

survey_mean(.data, x, …, .preserve = FALSE)

Estimate the population mean.

survey_mean(.data, x, proportion = TRUE, prop_method = “logit”)

Estimate a proportion if x is a binary variable with values 0 and
1 or a logical variable.

x can be an expression such as `AGE > 25`

Use the prop_method argument to choose a specialized
method for computing confidence intervals.

survey_median(.data, x)

Estimate the population median.

survey_quantile(.data, x, quantiles = 0.5)

Estimate population quantiles such as the median or quartiles.

survey_sd(.data, x)

Estimate the population standard deviation of a variable.

survey_var(.data, x)

Estimate the population variance of a variable.

survey_ratio(.data, numerator, denominator)

Estimate the ratio of population means for two variables.

survey_corr(.data, x, y)

Estimate the population correlation between two variables.

design |>
group_by(region) |>
summarize(pop_size = survey_total(),

mean_age = survey_mean(AGE))

Every statistical summary function includes a vartype argument
which can be used to request one or more of the following
measures of sampling variation.

After creating a survey design object with srvyr, you can manipulate data and compute summaries using dplyr verbs such as filter() or summarize().
srvyr provides specialized statistical summary functions to calculate weighted estimates along with standard errors and confidence intervals.

Example
Code

Example
Output

survey_prop(.data, …, prop_method = “logit”)

mean_age_semean_agepop_size_sepop_sizeregion
1.2 4625,410 15,342,875 North
1.1 4437,902 5,861,942 South

Proportions and Percentages

These functions are used within the dplyr functions
summarize() and mutate(), returning an estimate and its
standard error (with the suffix “_se”)

“var”: The sampling variance
“se”: The standard error (included by default)
“cv”: The coefficient of variation
“ci”: A confidence interval, with confidence level controlled

by the level argument

design |>
summarize(

age = survey_mean(AGE, vartype = c(“se”, “ci”), level = 0.95)
)

Example Code

STANDARD ERRORS AND CONFIDENCE INTERVALS

For a grouped dataset, you can estimate each group’s
proportion of the total population by using survey_prop().

By default, if there are multiple grouping variables, x and y, then
the result will be proportions of y within categories of x.
The interact() function can be used to obtain proportions for
combinations of variables.

design |>
group_by(region, agree) |>
summarize(prop = survey_prop())

Nested Proportions: Proportion of one variable within another

prop_sepropagreeregion
0.01 0.9Yes North
0.010.1No North
0.050.5YesSouth
0.050.5NoSouth

design |>
group_by(interact(region, agree)) |>
summarize(prop = survey_prop())

prop_sepropagreeregion
0.01 0.675Yes North

0.01
0.05

0.075
0.125

No
Yes

North
South

0.050.125NoSouth

Cross-classified Proportions: Proportions of combinations of variables

Column-wise Operations
Use functions from dplyr such as `across()` to apply summaries
to multiple columns.

Example: design |> summarise(across(is.numeric, survey_mean))

Read more about column-wise functions from dplyr here:
https://dplyr.tidyverse.org/articles/colwise.html

