Model handler functions for API endpoint
Source:R/caret.R
, R/gam.R
, R/glm.R
, and 11 more
handler_startup.Rd
These are developer-facing functions, useful for supporting new model types.
Each model supported by vetiver_model()
uses two handler functions
in vetiver_api()
:
The
handler_startup
function executes when the API starts. Use this function for tasks like loading packages. A model can use the default method here, which isNULL
(to do nothing at startup).The
handler_predict
function executes at each API call. Use this function for callingpredict()
and any other tasks that must be executed at each API call.
Usage
# S3 method for class 'train'
handler_startup(vetiver_model)
# S3 method for class 'train'
handler_predict(vetiver_model, ...)
# S3 method for class 'gam'
handler_startup(vetiver_model)
# S3 method for class 'gam'
handler_predict(vetiver_model, ...)
# S3 method for class 'glm'
handler_predict(vetiver_model, ...)
handler_startup(vetiver_model)
# Default S3 method
handler_startup(vetiver_model)
handler_predict(vetiver_model, ...)
# Default S3 method
handler_predict(vetiver_model, ...)
# S3 method for class 'keras.engine.training.Model'
handler_startup(vetiver_model)
# S3 method for class 'keras.engine.training.Model'
handler_predict(vetiver_model, ...)
# S3 method for class 'kproto'
handler_predict(vetiver_model, ...)
# S3 method for class 'lm'
handler_predict(vetiver_model, ...)
# S3 method for class 'luz_module_fitted'
handler_startup(vetiver_model)
# S3 method for class 'luz_module_fitted'
handler_predict(vetiver_model, ...)
# S3 method for class 'Learner'
handler_startup(vetiver_model)
# S3 method for class 'Learner'
handler_predict(vetiver_model, ...)
# S3 method for class 'ranger'
handler_startup(vetiver_model)
# S3 method for class 'ranger'
handler_predict(vetiver_model, ...)
# S3 method for class 'recipe'
handler_startup(vetiver_model)
# S3 method for class 'recipe'
handler_predict(vetiver_model, ...)
# S3 method for class 'model_stack'
handler_startup(vetiver_model)
# S3 method for class 'model_stack'
handler_predict(vetiver_model, ...)
# S3 method for class 'workflow'
handler_startup(vetiver_model)
# S3 method for class 'workflow'
handler_predict(vetiver_model, ...)
# S3 method for class 'xgb.Booster'
handler_startup(vetiver_model)
# S3 method for class 'xgb.Booster'
handler_predict(vetiver_model, ...)
Arguments
- vetiver_model
A deployable
vetiver_model()
object- ...
Other arguments passed to
predict()
, such as predictiontype
Value
A handler_startup
function should return invisibly, while a
handler_predict
function should return a function with the signature
function(req)
. The request body (req$body
) consists of the new data
at prediction time; this function should return predictions either as a
tibble or as a list coercable to a tibble via tibble::as_tibble()
.
Examples
cars_lm <- lm(mpg ~ ., data = mtcars)
v <- vetiver_model(cars_lm, "cars_linear")
handler_startup(v)
handler_predict(v)
#> function (req)
#> {
#> newdata <- req$body
#> if (!is_null(ptype)) {
#> newdata <- vetiver_type_convert(newdata, ptype)
#> newdata <- hardhat::scream(newdata, ptype)
#> }
#> ret <- predict(vetiver_model$model, newdata = newdata, ...)
#> list(.pred = ret)
#> }
#> <bytecode: 0x560fd6d19fa8>
#> <environment: 0x560fd6d1cd38>