Package index
Handling vetiver objects
A vetiver_model()
collects the information needed to store, version, and deploy a trained model.
-
vetiver_model()
new_vetiver_model()
- Create a vetiver object for deployment of a trained model
-
vetiver_pin_write()
vetiver_pin_read()
- Read and write a trained model to a board of models
-
vetiver_api()
vetiver_pr_post()
vetiver_pr_docs()
- Create a Plumber API to predict with a deployable
vetiver_model()
object
-
vetiver_write_plumber()
- Write a deployable Plumber file for a vetiver model
-
vetiver_write_docker()
- Write a Dockerfile for a vetiver model
-
vetiver_prepare_docker()
- Generate files necessary to build a Docker container for a vetiver model
-
vetiver_endpoint()
- Create a model API endpoint object for prediction
-
predict(<vetiver_endpoint>)
- Post new data to a deployed model API endpoint and return predictions
-
augment(<vetiver_endpoint>)
- Post new data to a deployed model API endpoint and augment with predictions
-
vetiver_deploy_rsconnect()
- Deploy a vetiver model API to Posit Connect
-
vetiver_create_rsconnect_bundle()
- Create an Posit Connect bundle for a vetiver model API
-
vetiver_deploy_sagemaker()
- Deploy a vetiver model API to Amazon SageMaker
-
vetiver_endpoint_sagemaker()
- Create a SageMaker model API endpoint object for prediction
-
predict(<vetiver_endpoint_sagemaker>)
- Post new data to a deployed SageMaker model endpoint and return predictions
-
augment(<vetiver_endpoint_sagemaker>)
- Post new data to a deployed SageMaker model endpoint and augment with predictions
-
vetiver_sm_build()
vetiver_sm_model()
vetiver_sm_endpoint()
- Deploy a vetiver model API to Amazon SageMaker with modular functions
-
vetiver_sm_delete()
- Delete Amazon SageMaker model, endpoint, and endpoint configuration
Monitoring deployed models
Monitor a deployed vetiver_model()
with a dashboard.
-
vetiver_compute_metrics()
- Aggregate model metrics over time for monitoring
-
vetiver_pin_metrics()
- Update model metrics over time for monitoring
-
vetiver_plot_metrics()
- Plot model metrics over time for monitoring
-
vetiver_dashboard()
get_vetiver_dashboard_pins()
pin_example_kc_housing_model()
- R Markdown format for model monitoring dashboards
Developer functions
These functions are helpful for developers extending vetiver for other types of models.
-
api_spec()
glue_spec_summary()
- Update the OpenAPI specification using model metadata
-
attach_pkgs()
load_pkgs()
- Fully attach or load packages for making model predictions
-
handler_startup()
handler_predict()
- Model handler functions for API endpoint
-
map_request_body()
- Identify data types for each column in an input data prototype
-
vetiver_create_description()
vetiver_prepare_model()
- Model constructor methods
-
vetiver_meta()
vetiver_create_meta()
- Metadata constructors for
vetiver_model()
object
-
vetiver_ptype()
vetiver_create_ptype()
- Create a vetiver input data prototype
-
vetiver_type_convert()
- Convert new data at prediction time using input data prototype