
Package index
Handling vetiver objects
A vetiver_model() collects the information needed to store, version, and deploy a trained model.
-
vetiver_model()new_vetiver_model() - Create a vetiver object for deployment of a trained model
-
vetiver_pin_write()vetiver_pin_read() - Read and write a trained model to a board of models
-
vetiver_api()vetiver_pr_post()vetiver_pr_docs() - Create a Plumber API to predict with a deployable
vetiver_model()object
-
vetiver_write_plumber() - Write a deployable Plumber file for a vetiver model
-
vetiver_write_docker() - Write a Dockerfile for a vetiver model
-
vetiver_prepare_docker() - Generate files necessary to build a Docker container for a vetiver model
-
vetiver_endpoint() - Create a model API endpoint object for prediction
-
predict(<vetiver_endpoint>) - Post new data to a deployed model API endpoint and return predictions
-
augment(<vetiver_endpoint>) - Post new data to a deployed model API endpoint and augment with predictions
-
vetiver_deploy_rsconnect() - Deploy a vetiver model API to Posit Connect
-
vetiver_create_rsconnect_bundle() - Create an Posit Connect bundle for a vetiver model API
-
vetiver_deploy_sagemaker() - Deploy a vetiver model API to Amazon SageMaker
-
vetiver_endpoint_sagemaker() - Create a SageMaker model API endpoint object for prediction
-
predict(<vetiver_endpoint_sagemaker>) - Post new data to a deployed SageMaker model endpoint and return predictions
-
augment(<vetiver_endpoint_sagemaker>) - Post new data to a deployed SageMaker model endpoint and augment with predictions
-
vetiver_sm_build()vetiver_sm_model()vetiver_sm_endpoint() - Deploy a vetiver model API to Amazon SageMaker with modular functions
-
vetiver_sm_delete() - Delete Amazon SageMaker model, endpoint, and endpoint configuration
Monitoring deployed models
Monitor a deployed vetiver_model() with a dashboard.
-
vetiver_compute_metrics() - Aggregate model metrics over time for monitoring
-
vetiver_pin_metrics() - Update model metrics over time for monitoring
-
vetiver_plot_metrics() - Plot model metrics over time for monitoring
-
vetiver_dashboard()get_vetiver_dashboard_pins()pin_example_kc_housing_model() - R Markdown format for model monitoring dashboards
Developer functions
These functions are helpful for developers extending vetiver for other types of models.
-
api_spec()glue_spec_summary() - Update the OpenAPI specification using model metadata
-
attach_pkgs()load_pkgs() - Fully attach or load packages for making model predictions
-
handler_startup()handler_predict() - Model handler functions for API endpoint
-
map_request_body() - Identify data types for each column in an input data prototype
-
vetiver_create_description()vetiver_prepare_model() - Model constructor methods
-
vetiver_meta()vetiver_create_meta() - Metadata constructors for
vetiver_model()object
-
vetiver_ptype()vetiver_create_ptype() - Create a vetiver input data prototype
-
vetiver_type_convert() - Convert new data at prediction time using input data prototype