Create a vetiver input data prototype
Source:R/caret.R
, R/gam.R
, R/glm.R
, and 11 more
vetiver_create_ptype.Rd
Optionally find and return an input data prototype for a model.
Usage
# S3 method for train
vetiver_ptype(model, ...)
# S3 method for gam
vetiver_ptype(model, ...)
# S3 method for glm
vetiver_ptype(model, ...)
# S3 method for keras.engine.training.Model
vetiver_ptype(model, ...)
# S3 method for kproto
vetiver_ptype(model, ...)
# S3 method for lm
vetiver_ptype(model, ...)
# S3 method for luz_module_fitted
vetiver_ptype(model, ...)
# S3 method for Learner
vetiver_ptype(model, ...)
vetiver_ptype(model, ...)
# S3 method for default
vetiver_ptype(model, ...)
vetiver_create_ptype(model, save_prototype, ...)
# S3 method for ranger
vetiver_ptype(model, ...)
# S3 method for recipe
vetiver_ptype(model, ...)
# S3 method for model_stack
vetiver_ptype(model, ...)
# S3 method for workflow
vetiver_ptype(model, ...)
# S3 method for xgb.Booster
vetiver_ptype(model, ...)
Arguments
- model
A trained model, such as an
lm()
model or a tidymodelsworkflows::workflow()
.- ...
Other method-specific arguments passed to
vetiver_ptype()
to compute an input data prototype, such asprototype_data
(a sample of training features).- save_prototype
Should an input data prototype be stored with the model? The options are
TRUE
(the default, which stores a zero-row slice of the training data),FALSE
(no input data prototype for visual documentation or checking), or a dataframe to be used for both checking at prediction time and examples in API visual documentation.
Value
A vetiver_ptype
method returns a zero-row dataframe, and
vetiver_create_ptype()
returns either such a zero-row dataframe, NULL
,
or the dataframe passed to save_prototype
.
Details
These are developer-facing functions, useful for supporting new model types.
A vetiver_model()
object optionally stores an input data prototype for
checking at prediction time.
The default for
save_prototype
,TRUE
, finds an input data prototype (a zero-row slice of the training data) viavetiver_ptype()
.save_prototype = FALSE
opts out of storing any input data prototype.You may pass your own data to
save_prototype
, but be sure to check that it has the same structure as your training data, perhaps withhardhat::scream()
.
Examples
cars_lm <- lm(mpg ~ cyl + disp, data = mtcars)
vetiver_create_ptype(cars_lm, TRUE)
#> # A tibble: 0 × 2
#> # ℹ 2 variables: cyl <dbl>, disp <dbl>
## calls the right method for `model` via:
vetiver_ptype(cars_lm)
#> # A tibble: 0 × 2
#> # ℹ 2 variables: cyl <dbl>, disp <dbl>
## can also turn off prototype
vetiver_create_ptype(cars_lm, FALSE)
#> NULL
## some models require that you pass in training features
cars_rf <- ranger::ranger(mpg ~ ., data = mtcars)
vetiver_ptype(cars_rf, prototype_data = mtcars[,-1])
#> # A tibble: 0 × 10
#> # ℹ 10 variables: cyl <dbl>, disp <dbl>, hp <dbl>, drat <dbl>, wt <dbl>,
#> # qsec <dbl>, vs <dbl>, am <dbl>, gear <dbl>, carb <dbl>