compute_metrics

compute_metrics(data, date_var, period, metric_set, truth, estimate, **kw)

Compute metrics for given time period

Parameters

Name Type Description Default
data DataFrame Pandas dataframe required
date_var str Column in data containing dates required
period timedelta Defining period to group by required
metric_set list List of metrics to compute, that have the parameters y_true and y_pred required
truth str Column name for true results required
estimate str Column name for predicted results required

Examples

>>> from datetime import timedelta
>>> import pandas as pd
>>> from sklearn.metrics import mean_squared_error, mean_absolute_error
>>> df = pd.DataFrame(
...   {
...        "index": ["2021-01-01", "2021-01-02", "2021-01-03"],
...        "truth": [200, 201, 199],
...        "pred": [198, 200, 199],
...   }
... )
>>> td = timedelta(days = 1)
>>> metric_set = [mean_squared_error, mean_absolute_error]
>>> metrics = compute_metrics(df, "index", td, metric_set, "truth", "pred")