A list of models that can be used as the model argument in glm_fit():
list of models that can be used as the model argument in glm_fit()
Bernoulli: Bernoulli(probs=mean) where mean = sigmoid(matmul(X, weights))
BernoulliNormalCDF: Bernoulli(probs=mean) where mean = Normal(0, 1).cdf(matmul(X, weights))
GammaExp: Gamma(concentration=1, rate=1 / mean) where mean = exp(matmul(X, weights))
GammaSoftplus: Gamma(concentration=1, rate=1 / mean) where mean = softplus(matmul(X, weights))
LogNormal: LogNormal(loc=log(mean) - log(2) / 2, scale=sqrt(log(2))) where
mean = exp(matmul(X, weights)).
LogNormalSoftplus: LogNormal(loc=log(mean) - log(2) / 2, scale=sqrt(log(2))) where
mean = softplus(matmul(X, weights))
Normal: Normal(loc=mean, scale=1) where mean = matmul(X, weights).
NormalReciprocal: Normal(loc=mean, scale=1) where mean = 1 / matmul(X, weights)
Poisson: Poisson(rate=mean) where mean = exp(matmul(X, weights)).
PoissonSoftplus: Poisson(rate=mean) where mean = softplus(matmul(X, weights)).
Other glm_fit:
glm_fit.tensorflow.tensor(),
glm_fit_one_step.tensorflow.tensor()