A list of models that can be used as the model
argument in glm_fit()
:
list of models that can be used as the model
argument in glm_fit()
Bernoulli
: Bernoulli(probs=mean)
where mean = sigmoid(matmul(X, weights))
BernoulliNormalCDF
: Bernoulli(probs=mean)
where mean = Normal(0, 1).cdf(matmul(X, weights))
GammaExp
: Gamma(concentration=1, rate=1 / mean)
where mean = exp(matmul(X, weights))
GammaSoftplus
: Gamma(concentration=1, rate=1 / mean)
where mean = softplus(matmul(X, weights))
LogNormal
: LogNormal(loc=log(mean) - log(2) / 2, scale=sqrt(log(2)))
where
mean = exp(matmul(X, weights))
.
LogNormalSoftplus
: LogNormal(loc=log(mean) - log(2) / 2, scale=sqrt(log(2)))
where
mean = softplus(matmul(X, weights))
Normal
: Normal(loc=mean, scale=1)
where mean = matmul(X, weights)
.
NormalReciprocal
: Normal(loc=mean, scale=1)
where mean = 1 / matmul(X, weights)
Poisson
: Poisson(rate=mean)
where mean = exp(matmul(X, weights))
.
PoissonSoftplus
: Poisson(rate=mean)
where mean = softplus(matmul(X, weights))
.
Other glm_fit:
glm_fit.tensorflow.tensor()
,
glm_fit_one_step.tensorflow.tensor()