|
tfd_autoregressive()
|
Autoregressive distribution |
|
tfd_batch_reshape()
|
Batch-Reshaping distribution |
|
tfd_bates()
|
Bates distribution. |
|
tfd_bernoulli()
|
Bernoulli distribution |
|
tfd_beta()
|
Beta distribution |
|
tfd_beta_binomial()
|
Beta-Binomial compound distribution |
|
tfd_binomial()
|
Binomial distribution |
|
tfd_categorical()
|
Categorical distribution over integers |
|
tfd_cauchy()
|
Cauchy distribution with location loc and scale scale |
|
tfd_chi()
|
Chi distribution |
|
tfd_chi2()
|
Chi Square distribution |
|
tfd_cholesky_lkj()
|
The CholeskyLKJ distribution on cholesky factors of correlation matrices |
|
tfd_continuous_bernoulli()
|
Continuous Bernoulli distribution. |
|
tfd_deterministic()
|
Scalar Deterministic distribution on the real line |
|
tfd_dirichlet()
|
Dirichlet distribution |
|
tfd_dirichlet_multinomial()
|
Dirichlet-Multinomial compound distribution |
|
tfd_empirical()
|
Empirical distribution |
|
tfd_exp_gamma()
|
ExpGamma distribution. |
|
tfd_exp_inverse_gamma()
|
ExpInverseGamma distribution. |
|
tfd_exponential()
|
Exponential distribution |
|
tfd_gamma()
|
Gamma distribution |
|
tfd_gamma_gamma()
|
Gamma-Gamma distribution |
|
tfd_gaussian_process()
|
Marginal distribution of a Gaussian process at finitely many points. |
|
tfd_gaussian_process_regression_model()
|
Posterior predictive distribution in a conjugate GP regression model. |
|
tfd_generalized_normal()
|
The Generalized Normal distribution. |
|
tfd_geometric()
|
Geometric distribution |
|
tfd_gumbel()
|
Scalar Gumbel distribution with location loc and scale parameters |
|
tfd_half_cauchy()
|
Half-Cauchy distribution |
|
tfd_half_normal()
|
Half-Normal distribution with scale scale |
|
tfd_hidden_markov_model()
|
Hidden Markov model distribution |
|
tfd_horseshoe()
|
Horseshoe distribution |
|
tfd_independent()
|
Independent distribution from batch of distributions |
|
tfd_inverse_gamma()
|
InverseGamma distribution |
|
tfd_inverse_gaussian()
|
Inverse Gaussian distribution |
|
tfd_johnson_s_u()
|
Johnson's SU-distribution. |
|
tfd_joint_distribution_named()
|
Joint distribution parameterized by named distribution-making functions. |
|
tfd_joint_distribution_named_auto_batched()
|
Joint distribution parameterized by named distribution-making functions. |
|
tfd_joint_distribution_sequential()
|
Joint distribution parameterized by distribution-making functions |
|
tfd_joint_distribution_sequential_auto_batched()
|
Joint distribution parameterized by distribution-making functions. |
|
tfd_kumaraswamy()
|
Kumaraswamy distribution |
|
tfd_laplace()
|
Laplace distribution with location loc and scale parameters |
|
tfd_linear_gaussian_state_space_model()
|
Observation distribution from a linear Gaussian state space model |
|
tfd_lkj()
|
LKJ distribution on correlation matrices |
|
tfd_log_logistic()
|
The log-logistic distribution. |
|
tfd_log_normal() tfd_log_normal()
|
Log-normal distribution |
|
tfd_logistic()
|
Logistic distribution with location loc and scale parameters |
|
tfd_mixture()
|
Mixture distribution |
|
tfd_mixture_same_family()
|
Mixture (same-family) distribution |
|
tfd_multinomial()
|
Multinomial distribution |
|
tfd_multivariate_normal_diag()
|
Multivariate normal distribution on R^k |
|
tfd_multivariate_normal_diag_plus_low_rank()
|
Multivariate normal distribution on R^k |
|
tfd_multivariate_normal_full_covariance()
|
Multivariate normal distribution on R^k |
|
tfd_multivariate_normal_linear_operator()
|
The multivariate normal distribution on R^k |
|
tfd_multivariate_normal_tri_l()
|
The multivariate normal distribution on R^k |
|
tfd_multivariate_student_t_linear_operator()
|
Multivariate Student's t-distribution on R^k |
|
tfd_negative_binomial()
|
NegativeBinomial distribution |
|
tfd_normal()
|
Normal distribution with loc and scale parameters |
|
tfd_one_hot_categorical()
|
OneHotCategorical distribution |
|
tfd_pareto()
|
Pareto distribution |
|
tfd_pixel_cnn()
|
The Pixel CNN++ distribution |
|
tfd_poisson()
|
Poisson distribution |
|
tfd_poisson_log_normal_quadrature_compound()
|
PoissonLogNormalQuadratureCompound distribution
|
|
tfd_power_spherical()
|
The Power Spherical distribution over unit vectors on S^{n-1}. |
|
tfd_probit_bernoulli()
|
ProbitBernoulli distribution. |
|
tfd_quantized()
|
Distribution representing the quantization Y = ceiling(X) |
|
tfd_relaxed_bernoulli()
|
RelaxedBernoulli distribution with temperature and logits parameters |
|
tfd_relaxed_one_hot_categorical()
|
RelaxedOneHotCategorical distribution with temperature and logits |
|
tfd_sample_distribution()
|
Sample distribution via independent draws. |
|
tfd_sinh_arcsinh()
|
The SinhArcsinh transformation of a distribution on (-inf, inf) |
|
tfd_skellam()
|
Skellam distribution. |
|
tfd_spherical_uniform()
|
The uniform distribution over unit vectors on S^{n-1}. |
|
tfd_student_t()
|
Student's t-distribution |
|
tfd_student_t_process()
|
Marginal distribution of a Student's T process at finitely many points |
|
tfd_transformed_distribution()
|
A Transformed Distribution |
|
tfd_triangular()
|
Triangular distribution with low, high and peak parameters |
|
tfd_truncated_cauchy()
|
The Truncated Cauchy distribution. |
|
tfd_truncated_normal()
|
Truncated Normal distribution |
|
tfd_uniform()
|
Uniform distribution with low and high parameters |
|
tfd_variational_gaussian_process()
|
Posterior predictive of a variational Gaussian process |
|
tfd_vector_diffeomixture()
|
VectorDiffeomixture distribution |
|
tfd_vector_exponential_diag()
|
The vectorization of the Exponential distribution on R^k |
|
tfd_vector_exponential_linear_operator()
|
The vectorization of the Exponential distribution on R^k |
|
tfd_vector_laplace_diag()
|
The vectorization of the Laplace distribution on R^k |
|
tfd_vector_laplace_linear_operator()
|
The vectorization of the Laplace distribution on R^k |
|
tfd_vector_sinh_arcsinh_diag()
|
The (diagonal) SinhArcsinh transformation of a distribution on R^k |
|
tfd_von_mises()
|
The von Mises distribution over angles |
|
tfd_von_mises_fisher()
|
The von Mises-Fisher distribution over unit vectors on S^{n-1} |
|
tfd_weibull()
|
The Weibull distribution with 'concentration' and scale parameters. |
|
tfd_wishart()
|
The matrix Wishart distribution on positive definite matrices |
|
tfd_wishart_linear_operator()
|
The matrix Wishart distribution on positive definite matrices |
|
tfd_wishart_tri_l()
|
The matrix Wishart distribution parameterized with Cholesky factors. |
|
tfd_zipf()
|
Zipf distribution |
|
layer_categorical_mixture_of_one_hot_categorical()
|
A OneHotCategorical mixture Keras layer from k * (1 + d) params. |
|
layer_distribution_lambda()
|
Keras layer enabling plumbing TFP distributions through Keras models |
|
layer_independent_bernoulli()
|
An Independent-Bernoulli Keras layer from prod(event_shape) params |
|
layer_independent_logistic()
|
An independent Logistic Keras layer. |
|
layer_independent_normal()
|
An independent Normal Keras layer. |
|
layer_independent_poisson()
|
An independent Poisson Keras layer. |
|
layer_kl_divergence_add_loss()
|
Pass-through layer that adds a KL divergence penalty to the model loss |
|
layer_kl_divergence_regularizer()
|
Regularizer that adds a KL divergence penalty to the model loss |
|
layer_mixture_logistic()
|
A mixture distribution Keras layer, with independent logistic components. |
|
layer_mixture_normal()
|
A mixture distribution Keras layer, with independent normal components. |
|
layer_mixture_same_family()
|
A mixture (same-family) Keras layer. |
|
layer_multivariate_normal_tri_l()
|
A d-variate Multivariate Normal TriL Keras layer from d+d*(d+1)/ 2 params |
|
layer_one_hot_categorical()
|
A d-variate OneHotCategorical Keras layer from d params. |
|
tfb_absolute_value()
|
ComputesY = g(X) = Abs(X), element-wise |
|
tfb_affine()
|
Affine bijector |
|
tfb_affine_linear_operator()
|
ComputesY = g(X; shift, scale) = scale @ X + shift |
|
tfb_affine_scalar()
|
AffineScalar bijector |
|
tfb_ascending()
|
Maps unconstrained R^n to R^n in ascending order. |
|
tfb_batch_normalization()
|
ComputesY = g(X) s.t. X = g^-1(Y) = (Y - mean(Y)) / std(Y) |
|
tfb_blockwise()
|
Bijector which applies a list of bijectors to blocks of a Tensor |
|
tfb_chain()
|
Bijector which applies a sequence of bijectors |
|
tfb_cholesky_outer_product()
|
Computesg(X) = X @ X.T where X is lower-triangular, positive-diagonal matrix |
|
tfb_cholesky_to_inv_cholesky()
|
Maps the Cholesky factor of M to the Cholesky factor of M^{-1} |
|
tfb_correlation_cholesky()
|
Maps unconstrained reals to Cholesky-space correlation matrices. |
|
tfb_cumsum()
|
Computes the cumulative sum of a tensor along a specified axis. |
|
tfb_discrete_cosine_transform()
|
ComputesY = g(X) = DCT(X), where DCT type is indicated by the type arg |
|
tfb_exp()
|
ComputesY=g(X)=exp(X) |
|
tfb_expm1()
|
ComputesY = g(X) = exp(X) - 1 |
|
tfb_ffjord()
|
Implements a continuous normalizing flow X->Y defined via an ODE. |
|
tfb_fill_scale_tri_l()
|
Transforms unconstrained vectors to TriL matrices with positive diagonal |
|
tfb_fill_triangular()
|
Transforms vectors to triangular |
|
tfb_glow()
|
Implements the Glow Bijector from Kingma & Dhariwal (2018). |
|
tfb_gompertz_cdf()
|
Compute Y = g(X) = 1 - exp(-c * (exp(rate * X) - 1), the Gompertz CDF. |
|
tfb_gumbel()
|
ComputesY = g(X) = exp(-exp(-(X - loc) / scale)) |
|
tfb_gumbel_cdf()
|
Compute Y = g(X) = exp(-exp(-(X - loc) / scale)), the Gumbel CDF. |
|
tfb_identity()
|
ComputesY = g(X) = X |
|
tfb_inline()
|
Bijector constructed from custom functions |
|
tfb_invert()
|
Bijector which inverts another Bijector |
|
tfb_iterated_sigmoid_centered()
|
Bijector which applies a Stick Breaking procedure. |
|
tfb_kumaraswamy()
|
ComputesY = g(X) = (1 - (1 - X)**(1 / b))**(1 / a), with X in [0, 1] |
|
tfb_kumaraswamy_cdf()
|
ComputesY = g(X) = (1 - (1 - X)**(1 / b))**(1 / a), with X in [0, 1] |
|
tfb_lambert_w_tail()
|
LambertWTail transformation for heavy-tail Lambert W x F random variables. |
|
tfb_masked_autoregressive_default_template()
|
Masked Autoregressive Density Estimator |
|
tfb_masked_autoregressive_flow()
|
Affine MaskedAutoregressiveFlow bijector |
|
tfb_masked_dense()
|
Autoregressively masked dense layer |
|
tfb_matrix_inverse_tri_l()
|
Computes g(L) = inv(L), where L is a lower-triangular matrix |
|
tfb_matvec_lu()
|
Matrix-vector multiply using LU decomposition |
|
tfb_normal_cdf()
|
ComputesY = g(X) = NormalCDF(x) |
|
tfb_ordered()
|
Bijector which maps a tensor x_k that has increasing elements in the last dimension to an unconstrained tensor y_k |
|
tfb_pad()
|
Pads a value to the event_shape of a Tensor. |
|
tfb_permute()
|
Permutes the rightmost dimension of a Tensor |
|
tfb_power_transform()
|
ComputesY = g(X) = (1 + X * c)**(1 / c), where X >= -1 / c |
|
tfb_rational_quadratic_spline()
|
A piecewise rational quadratic spline, as developed in Conor et al.(2019). |
|
tfb_rayleigh_cdf()
|
Compute Y = g(X) = 1 - exp( -(X/scale)**2 / 2 ), X >= 0. |
|
tfb_real_nvp()
|
RealNVP affine coupling layer for vector-valued events |
|
tfb_real_nvp_default_template()
|
Build a scale-and-shift function using a multi-layer neural network |
|
tfb_reciprocal()
|
A Bijector that computes b(x) = 1. / x |
|
tfb_reshape()
|
Reshapes the event_shape of a Tensor |
|
tfb_scale()
|
Compute Y = g(X; scale) = scale * X. |
|
tfb_scale_matvec_diag()
|
Compute Y = g(X; scale) = scale @ X |
|
tfb_scale_matvec_linear_operator()
|
Compute Y = g(X; scale) = scale @ X. |
|
tfb_scale_matvec_lu()
|
Matrix-vector multiply using LU decomposition. |
|
tfb_scale_matvec_tri_l()
|
Compute Y = g(X; scale) = scale @ X. |
|
tfb_scale_tri_l()
|
Transforms unconstrained vectors to TriL matrices with positive diagonal |
|
tfb_shift()
|
Compute Y = g(X; shift) = X + shift. |
|
tfb_shifted_gompertz_cdf()
|
Compute Y = g(X) = (1 - exp(-rate * X)) * exp(-c * exp(-rate * X)) |
|
tfb_sigmoid()
|
ComputesY = g(X) = 1 / (1 + exp(-X)) |
|
tfb_sinh()
|
Bijector that computes Y = sinh(X). |
|
tfb_sinh_arcsinh()
|
ComputesY = g(X) = Sinh( (Arcsinh(X) + skewness) * tailweight ) |
|
tfb_softmax_centered()
|
Computes Y = g(X) = exp([X 0]) / sum(exp([X 0])) |
|
tfb_softplus()
|
Computes Y = g(X) = Log[1 + exp(X)] |
|
tfb_softsign()
|
Computes Y = g(X) = X / (1 + |X|) |
|
tfb_split()
|
Split a Tensor event along an axis into a list of Tensors. |
|
tfb_square()
|
Computesg(X) = X^2; X is a positive real number. |
|
tfb_tanh()
|
Computes Y = tanh(X) |
|
tfb_transform_diagonal()
|
Applies a Bijector to the diagonal of a matrix |
|
tfb_transpose()
|
ComputesY = g(X) = transpose_rightmost_dims(X, rightmost_perm) |
|
tfb_weibull()
|
ComputesY = g(X) = 1 - exp((-X / scale) ** concentration) where X >= 0 |
|
tfb_weibull_cdf()
|
Compute Y = g(X) = 1 - exp((-X / scale) ** concentration), X >= 0. |
|
vi_amari_alpha()
|
The Amari-alpha Csiszar-function in log-space |
|
vi_arithmetic_geometric()
|
The Arithmetic-Geometric Csiszar-function in log-space |
|
vi_chi_square()
|
The chi-square Csiszar-function in log-space |
|
vi_csiszar_vimco()
|
Use VIMCO to lower the variance of the gradient of csiszar_function(Avg(logu)) |
|
vi_dual_csiszar_function()
|
Calculates the dual Csiszar-function in log-space |
|
vi_fit_surrogate_posterior()
|
Fit a surrogate posterior to a target (unnormalized) log density |
|
vi_jeffreys()
|
The Jeffreys Csiszar-function in log-space |
|
vi_jensen_shannon()
|
The Jensen-Shannon Csiszar-function in log-space |
|
vi_kl_forward()
|
The forward Kullback-Leibler Csiszar-function in log-space |
|
vi_kl_reverse()
|
The reverse Kullback-Leibler Csiszar-function in log-space |
|
vi_log1p_abs()
|
The log1p-abs Csiszar-function in log-space |
|
vi_modified_gan()
|
The Modified-GAN Csiszar-function in log-space |
|
vi_monte_carlo_variational_loss()
|
Monte-Carlo approximation of an f-Divergence variational loss |
|
vi_pearson()
|
The Pearson Csiszar-function in log-space |
|
vi_squared_hellinger()
|
The Squared-Hellinger Csiszar-function in log-space |
|
vi_symmetrized_csiszar_function()
|
Symmetrizes a Csiszar-function in log-space |
|
mcmc_dual_averaging_step_size_adaptation()
|
Adapts the inner kernel's step_size based on log_accept_prob. |
|
mcmc_hamiltonian_monte_carlo()
|
Runs one step of Hamiltonian Monte Carlo. |
|
mcmc_metropolis_adjusted_langevin_algorithm()
|
Runs one step of Metropolis-adjusted Langevin algorithm. |
|
mcmc_metropolis_hastings()
|
Runs one step of the Metropolis-Hastings algorithm. |
|
mcmc_no_u_turn_sampler()
|
Runs one step of the No U-Turn Sampler |
|
mcmc_random_walk_metropolis()
|
Runs one step of the RWM algorithm with symmetric proposal. |
|
mcmc_replica_exchange_mc()
|
Runs one step of the Replica Exchange Monte Carlo |
|
mcmc_simple_step_size_adaptation()
|
Adapts the inner kernel's step_size based on log_accept_prob. |
|
mcmc_slice_sampler()
|
Runs one step of the slice sampler using a hit and run approach |
|
mcmc_transformed_transition_kernel()
|
Applies a bijector to the MCMC's state space |
|
mcmc_uncalibrated_hamiltonian_monte_carlo()
|
Runs one step of Uncalibrated Hamiltonian Monte Carlo |
|
mcmc_uncalibrated_langevin()
|
Runs one step of Uncalibrated Langevin discretized diffusion. |
|
mcmc_uncalibrated_random_walk()
|
Generate proposal for the Random Walk Metropolis algorithm. |
|
sts_additive_state_space_model()
|
A state space model representing a sum of component state space models. |
|
sts_autoregressive()
|
Formal representation of an autoregressive model. |
|
sts_autoregressive_state_space_model()
|
State space model for an autoregressive process. |
|
sts_constrained_seasonal_state_space_model()
|
Seasonal state space model with effects constrained to sum to zero. |
|
sts_dynamic_linear_regression()
|
Formal representation of a dynamic linear regression model. |
|
sts_dynamic_linear_regression_state_space_model()
|
State space model for a dynamic linear regression from provided covariates. |
|
sts_linear_regression()
|
Formal representation of a linear regression from provided covariates. |
|
sts_local_level()
|
Formal representation of a local level model |
|
sts_local_level_state_space_model()
|
State space model for a local level |
|
sts_local_linear_trend()
|
Formal representation of a local linear trend model |
|
sts_local_linear_trend_state_space_model()
|
State space model for a local linear trend |
|
sts_seasonal()
|
Formal representation of a seasonal effect model. |
|
sts_seasonal_state_space_model()
|
State space model for a seasonal effect. |
|
sts_semi_local_linear_trend()
|
Formal representation of a semi-local linear trend model. |
|
sts_semi_local_linear_trend_state_space_model()
|
State space model for a semi-local linear trend. |
|
sts_smooth_seasonal()
|
Formal representation of a smooth seasonal effect model |
|
sts_smooth_seasonal_state_space_model()
|
State space model for a smooth seasonal effect |
|
sts_sparse_linear_regression()
|
Formal representation of a sparse linear regression. |
|
sts_sum()
|
Sum of structural time series components. |