Simply returns a (trainable) variable, regardless of input.
This layer implements the mathematical function f(x) = c where c is a
constant, i.e., unchanged for all x. Like other Keras layers, the constant
is trainable. This layer can also be interpretted as the special case of
layer_dense() when the kernel is forced to be the zero matrix
(tf$zeros).
layer_variable( object, shape, dtype = NULL, activation = NULL, initializer = "zeros", regularizer = NULL, constraint = NULL, ... )
| object | Model or layer object |
|---|---|
| shape | integer or integer vector specifying the shape of the output of this layer. |
| dtype | TensorFlow |
| activation | An activation function. See |
| initializer | Initializer for the |
| regularizer | Regularizer function applied to the |
| constraint | Constraint function applied to the |
| ... | Additional keyword arguments passed to the |
a Keras layer
Other layers:
layer_autoregressive(),
layer_conv_1d_flipout(),
layer_conv_1d_reparameterization(),
layer_conv_2d_flipout(),
layer_conv_2d_reparameterization(),
layer_conv_3d_flipout(),
layer_conv_3d_reparameterization(),
layer_dense_flipout(),
layer_dense_local_reparameterization(),
layer_dense_reparameterization(),
layer_dense_variational()