R/layers.R
layer_dense_reparameterization.Rd
This layer implements the Bayesian variational inference analogue to
a dense layer by assuming the kernel
and/or the bias
are drawn
from distributions.
layer_dense_reparameterization( object, units, activation = NULL, activity_regularizer = NULL, trainable = TRUE, kernel_posterior_fn = tfp$layers$util$default_mean_field_normal_fn(), kernel_posterior_tensor_fn = function(d) d %>% tfd_sample(), kernel_prior_fn = tfp$layers$util$default_multivariate_normal_fn, kernel_divergence_fn = function(q, p, ignore) tfd_kl_divergence(q, p), bias_posterior_fn = tfp$layers$util$default_mean_field_normal_fn(is_singular = TRUE), bias_posterior_tensor_fn = function(d) d %>% tfd_sample(), bias_prior_fn = NULL, bias_divergence_fn = function(q, p, ignore) tfd_kl_divergence(q, p), ... )
object | Model or layer object |
---|---|
units | integer dimensionality of the output space |
activation | Activation function. Set it to None to maintain a linear activation. |
activity_regularizer | Regularizer function for the output. |
trainable | Whether the layer weights will be updated during training. |
kernel_posterior_fn | Function which creates |
kernel_posterior_tensor_fn | Function which takes a |
kernel_prior_fn | Function which creates |
kernel_divergence_fn | Function which takes the surrogate posterior distribution, prior distribution and random variate
sample(s) from the surrogate posterior and computes or approximates the KL divergence. The
distributions are |
bias_posterior_fn | Function which creates a |
bias_posterior_tensor_fn | Function which takes a |
bias_prior_fn | Function which creates |
bias_divergence_fn | Function which takes the surrogate posterior distribution, prior distribution and random variate sample(s)
from the surrogate posterior and computes or approximates the KL divergence. The
distributions are |
... | Additional keyword arguments passed to the |
a Keras layer
By default, the layer implements a stochastic forward pass via sampling from the kernel and bias posteriors,
kernel, bias ~ posterior outputs = activation(matmul(inputs, kernel) + bias)
It uses the reparameterization estimator (Kingma and Welling, 2014)
which performs a Monte Carlo approximation of the distribution integrating
over the kernel
and bias
.
The arguments permit separate specification of the surrogate posterior
(q(W|x)
), prior (p(W)
), and divergence for both the kernel
and bias
distributions.
Upon being built, this layer adds losses (accessible via the losses
property) representing the divergences of kernel
and/or bias
surrogate
posteriors and their respective priors. When doing minibatch stochastic
optimization, make sure to scale this loss such that it is applied just once
per epoch (e.g. if kl
is the sum of losses
for each element of the batch,
you should pass kl / num_examples_per_epoch
to your optimizer).
You can access the kernel
and/or bias
posterior and prior distributions
after the layer is built via the kernel_posterior
, kernel_prior
,
bias_posterior
and bias_prior
properties.
Other layers:
layer_autoregressive()
,
layer_conv_1d_flipout()
,
layer_conv_1d_reparameterization()
,
layer_conv_2d_flipout()
,
layer_conv_2d_reparameterization()
,
layer_conv_3d_flipout()
,
layer_conv_3d_reparameterization()
,
layer_dense_flipout()
,
layer_dense_local_reparameterization()
,
layer_dense_variational()
,
layer_variable()