k * (1 + d) params.R/distribution-layers.R
layer_categorical_mixture_of_one_hot_categorical.Rdk (i.e., num_components) represents the number of component
OneHotCategorical distributions and d (i.e., event_size) represents the
number of categories within each OneHotCategorical distribution.
layer_categorical_mixture_of_one_hot_categorical( object, event_size, num_components, convert_to_tensor_fn = tfp$distributions$Distribution$sample, sample_dtype = NULL, validate_args = FALSE, ... )
| object | Model or layer object |
|---|---|
| event_size | Scalar |
| num_components | Scalar |
| convert_to_tensor_fn | A callable that takes a tfd$Distribution instance and returns a
tf$Tensor-like object. Default value: |
| sample_dtype |
|
| validate_args | Logical, default FALSE. When TRUE distribution parameters are checked for validity despite possibly degrading runtime performance. When FALSE invalid inputs may silently render incorrect outputs. Default value: FALSE. |
| ... | Additional arguments passed to |
a Keras layer
Typical choices for convert_to_tensor_fn include:
tfp$distributions$Distribution$sample
tfp$distributions$Distribution$mean
tfp$distributions$Distribution$mode
For an example how to use in a Keras model, see layer_independent_normal().
Other distribution_layers:
layer_distribution_lambda(),
layer_independent_bernoulli(),
layer_independent_logistic(),
layer_independent_normal(),
layer_independent_poisson(),
layer_kl_divergence_add_loss(),
layer_kl_divergence_regularizer(),
layer_mixture_logistic(),
layer_mixture_normal(),
layer_mixture_same_family(),
layer_multivariate_normal_tri_l(),
layer_one_hot_categorical()