k * (1 + d)
params.R/distribution-layers.R
layer_categorical_mixture_of_one_hot_categorical.Rd
k
(i.e., num_components
) represents the number of component
OneHotCategorical
distributions and d
(i.e., event_size
) represents the
number of categories within each OneHotCategorical
distribution.
layer_categorical_mixture_of_one_hot_categorical( object, event_size, num_components, convert_to_tensor_fn = tfp$distributions$Distribution$sample, sample_dtype = NULL, validate_args = FALSE, ... )
object | Model or layer object |
---|---|
event_size | Scalar |
num_components | Scalar |
convert_to_tensor_fn | A callable that takes a tfd$Distribution instance and returns a
tf$Tensor-like object. Default value: |
sample_dtype |
|
validate_args | Logical, default FALSE. When TRUE distribution parameters are checked for validity despite possibly degrading runtime performance. When FALSE invalid inputs may silently render incorrect outputs. Default value: FALSE. |
... | Additional arguments passed to |
a Keras layer
Typical choices for convert_to_tensor_fn
include:
tfp$distributions$Distribution$sample
tfp$distributions$Distribution$mean
tfp$distributions$Distribution$mode
For an example how to use in a Keras model, see layer_independent_normal()
.
Other distribution_layers:
layer_distribution_lambda()
,
layer_independent_bernoulli()
,
layer_independent_logistic()
,
layer_independent_normal()
,
layer_independent_poisson()
,
layer_kl_divergence_add_loss()
,
layer_kl_divergence_regularizer()
,
layer_mixture_logistic()
,
layer_mixture_normal()
,
layer_mixture_same_family()
,
layer_multivariate_normal_tri_l()
,
layer_one_hot_categorical()