An independent Normal Keras layer.
layer_independent_normal( object, event_shape, convert_to_tensor_fn = tfp$distributions$Distribution$sample, validate_args = FALSE, ... )
| object | Model or layer object |
|---|---|
| event_shape | Scalar integer representing the size of single draw from this distribution. |
| convert_to_tensor_fn | A callable that takes a tfd$Distribution instance and returns a
tf$Tensor-like object. Default value: |
| validate_args | Logical, default FALSE. When TRUE distribution parameters are checked
for validity despite possibly degrading runtime performance. When FALSE invalid inputs may
silently render incorrect outputs. Default value: FALSE.
@param ... Additional arguments passed to |
| ... | Additional arguments passed to |
a Keras layer
Other distribution_layers:
layer_categorical_mixture_of_one_hot_categorical(),
layer_distribution_lambda(),
layer_independent_bernoulli(),
layer_independent_logistic(),
layer_independent_poisson(),
layer_kl_divergence_add_loss(),
layer_kl_divergence_regularizer(),
layer_mixture_logistic(),
layer_mixture_normal(),
layer_mixture_same_family(),
layer_multivariate_normal_tri_l(),
layer_one_hot_categorical()
# \donttest{ library(keras) input_shape <- c(28, 28, 1) encoded_shape <- 2 n <- 2 model <- keras_model_sequential( list( layer_input(shape = input_shape), layer_flatten(), layer_dense(units = n), layer_dense(units = params_size_independent_normal(encoded_shape)), layer_independent_normal(event_shape = encoded_shape) ) ) # }