An independent Normal Keras layer.
layer_independent_normal( object, event_shape, convert_to_tensor_fn = tfp$distributions$Distribution$sample, validate_args = FALSE, ... )
object | Model or layer object |
---|---|
event_shape | Scalar integer representing the size of single draw from this distribution. |
convert_to_tensor_fn | A callable that takes a tfd$Distribution instance and returns a
tf$Tensor-like object. Default value: |
validate_args | Logical, default FALSE. When TRUE distribution parameters are checked
for validity despite possibly degrading runtime performance. When FALSE invalid inputs may
silently render incorrect outputs. Default value: FALSE.
@param ... Additional arguments passed to |
... | Additional arguments passed to |
a Keras layer
Other distribution_layers:
layer_categorical_mixture_of_one_hot_categorical()
,
layer_distribution_lambda()
,
layer_independent_bernoulli()
,
layer_independent_logistic()
,
layer_independent_poisson()
,
layer_kl_divergence_add_loss()
,
layer_kl_divergence_regularizer()
,
layer_mixture_logistic()
,
layer_mixture_normal()
,
layer_mixture_same_family()
,
layer_multivariate_normal_tri_l()
,
layer_one_hot_categorical()
# \donttest{ library(keras) input_shape <- c(28, 28, 1) encoded_shape <- 2 n <- 2 model <- keras_model_sequential( list( layer_input(shape = input_shape), layer_flatten(), layer_dense(units = n), layer_dense(units = params_size_independent_normal(encoded_shape)), layer_independent_normal(event_shape = encoded_shape) ) ) # }