R/distribution-layers.R
layer_kl_divergence_add_loss.Rd
Pass-through layer that adds a KL divergence penalty to the model loss
layer_kl_divergence_add_loss( object, distribution_b, use_exact_kl = FALSE, test_points_reduce_axis = NULL, test_points_fn = tf$convert_to_tensor, weight = NULL, ... )
object | Model or layer object |
---|---|
distribution_b | Distribution instance corresponding to b as in |
use_exact_kl | Logical indicating if KL divergence should be
calculated exactly via |
test_points_reduce_axis | Integer vector or scalar representing dimensions over which to reduce_mean while calculating the Monte Carlo approximation of the KL divergence. As is with all tf$reduce_* ops, NULL means reduce over all dimensions; () means reduce over none of them. Default value: () (i.e., no reduction). |
test_points_fn | A callable taking a |
weight | Multiplier applied to the calculated KL divergence for each Keras batch member. Default value: NULL (i.e., do not weight each batch member). |
... | Additional arguments passed to |
a Keras layer
For an example how to use in a Keras model, see layer_independent_normal()
.
Other distribution_layers:
layer_categorical_mixture_of_one_hot_categorical()
,
layer_distribution_lambda()
,
layer_independent_bernoulli()
,
layer_independent_logistic()
,
layer_independent_normal()
,
layer_independent_poisson()
,
layer_kl_divergence_regularizer()
,
layer_mixture_logistic()
,
layer_mixture_normal()
,
layer_mixture_same_family()
,
layer_multivariate_normal_tri_l()
,
layer_one_hot_categorical()