Note that a call to tfd_sample() without arguments will generate a single sample.
tfd_sample(distribution, sample_shape = list(), ...)
| distribution | The distribution being used. |
|---|---|
| sample_shape | 0D or 1D int32 Tensor. Shape of the generated samples. |
| ... | Additional parameters passed to Python. |
a Tensor with prepended dimensions sample_shape.
Other distribution_methods:
tfd_cdf(),
tfd_covariance(),
tfd_cross_entropy(),
tfd_entropy(),
tfd_kl_divergence(),
tfd_log_cdf(),
tfd_log_prob(),
tfd_log_survival_function(),
tfd_mean(),
tfd_mode(),
tfd_prob(),
tfd_quantile(),
tfd_stddev(),
tfd_survival_function(),
tfd_variance()
#> tf.Tensor([1.2293875 1.8353437], shape=(2,), dtype=float32)# }