R/mcmc-kernels.R
mcmc_uncalibrated_hamiltonian_monte_carlo.Rd
Warning: this kernel will not result in a chain which converges to the
target_log_prob
. To get a convergent MCMC, use mcmc_hamiltonian_monte_carlo(...)
or mcmc_metropolis_hastings(mcmc_uncalibrated_hamiltonian_monte_carlo(...))
.
For more details on UncalibratedHamiltonianMonteCarlo
, see HamiltonianMonteCarlo
.
mcmc_uncalibrated_hamiltonian_monte_carlo( target_log_prob_fn, step_size, num_leapfrog_steps, state_gradients_are_stopped = FALSE, seed = NULL, store_parameters_in_results = FALSE, name = NULL )
target_log_prob_fn | Function which takes an argument like
|
---|---|
step_size |
|
num_leapfrog_steps | Integer number of steps to run the leapfrog integrator
for. Total progress per HMC step is roughly proportional to
|
state_gradients_are_stopped |
|
seed | integer to seed the random number generator. |
store_parameters_in_results | If |
name | string prefixed to Ops created by this function.
Default value: |
a Monte Carlo sampling kernel
Other mcmc_kernels:
mcmc_dual_averaging_step_size_adaptation()
,
mcmc_hamiltonian_monte_carlo()
,
mcmc_metropolis_adjusted_langevin_algorithm()
,
mcmc_metropolis_hastings()
,
mcmc_no_u_turn_sampler()
,
mcmc_random_walk_metropolis()
,
mcmc_replica_exchange_mc()
,
mcmc_simple_step_size_adaptation()
,
mcmc_slice_sampler()
,
mcmc_transformed_transition_kernel()
,
mcmc_uncalibrated_langevin()
,
mcmc_uncalibrated_random_walk()