R/mcmc-kernels.R
mcmc_uncalibrated_hamiltonian_monte_carlo.RdWarning: this kernel will not result in a chain which converges to the
target_log_prob. To get a convergent MCMC, use mcmc_hamiltonian_monte_carlo(...)
or mcmc_metropolis_hastings(mcmc_uncalibrated_hamiltonian_monte_carlo(...)).
For more details on UncalibratedHamiltonianMonteCarlo, see HamiltonianMonteCarlo.
mcmc_uncalibrated_hamiltonian_monte_carlo( target_log_prob_fn, step_size, num_leapfrog_steps, state_gradients_are_stopped = FALSE, seed = NULL, store_parameters_in_results = FALSE, name = NULL )
| target_log_prob_fn | Function which takes an argument like
|
|---|---|
| step_size |
|
| num_leapfrog_steps | Integer number of steps to run the leapfrog integrator
for. Total progress per HMC step is roughly proportional to
|
| state_gradients_are_stopped |
|
| seed | integer to seed the random number generator. |
| store_parameters_in_results | If |
| name | string prefixed to Ops created by this function.
Default value: |
a Monte Carlo sampling kernel
Other mcmc_kernels:
mcmc_dual_averaging_step_size_adaptation(),
mcmc_hamiltonian_monte_carlo(),
mcmc_metropolis_adjusted_langevin_algorithm(),
mcmc_metropolis_hastings(),
mcmc_no_u_turn_sampler(),
mcmc_random_walk_metropolis(),
mcmc_replica_exchange_mc(),
mcmc_simple_step_size_adaptation(),
mcmc_slice_sampler(),
mcmc_transformed_transition_kernel(),
mcmc_uncalibrated_langevin(),
mcmc_uncalibrated_random_walk()