R/sts-functions.R
sts_build_factored_surrogate_posterior.RdThe surrogate posterior consists of independent Normal distributions for
each parameter with trainable loc and scale, transformed using the
parameter's bijector to the appropriate support space for that parameter.
sts_build_factored_surrogate_posterior( model, batch_shape = list(), seed = NULL, name = NULL )
| model | An instance of |
|---|---|
| batch_shape | Batch shape ( |
| seed | integer to seed the random number generator. |
| name | string prefixed to ops created by this function.
Default value: |
variational_posterior tfd_joint_distribution_named defining a trainable
surrogate posterior over model parameters. Samples from this
distribution are named lists with character parameter names as keys.
Other sts-functions:
sts_build_factored_variational_loss(),
sts_decompose_by_component(),
sts_decompose_forecast_by_component(),
sts_fit_with_hmc(),
sts_forecast(),
sts_one_step_predictive(),
sts_sample_uniform_initial_state()