[-2, 2] distribution in unconstrained space.R/sts-functions.R
sts_sample_uniform_initial_state.RdInitialize from a uniform [-2, 2] distribution in unconstrained space.
sts_sample_uniform_initial_state( parameter, return_constrained = TRUE, init_sample_shape = list(), seed = NULL )
| parameter |
|
|---|---|
| return_constrained | if |
| init_sample_shape |
|
| seed | integer to seed the random number generator. |
uniform_initializer Tensor of shape
concat([init_sample_shape, parameter.prior.batch_shape, transformed_event_shape]), where
transformed_event_shape is parameter.prior.event_shape, if
return_constrained=TRUE, and otherwise it is
parameter$bijector$inverse_event_shape(parameter$prior$event_shape).
Other sts-functions:
sts_build_factored_surrogate_posterior(),
sts_build_factored_variational_loss(),
sts_decompose_by_component(),
sts_decompose_forecast_by_component(),
sts_fit_with_hmc(),
sts_forecast(),
sts_one_step_predictive()