[-2, 2]
distribution in unconstrained space.R/sts-functions.R
sts_sample_uniform_initial_state.Rd
Initialize from a uniform [-2, 2]
distribution in unconstrained space.
sts_sample_uniform_initial_state( parameter, return_constrained = TRUE, init_sample_shape = list(), seed = NULL )
parameter |
|
---|---|
return_constrained | if |
init_sample_shape |
|
seed | integer to seed the random number generator. |
uniform_initializer Tensor
of shape
concat([init_sample_shape, parameter.prior.batch_shape, transformed_event_shape])
, where
transformed_event_shape
is parameter.prior.event_shape
, if
return_constrained=TRUE
, and otherwise it is
parameter$bijector$inverse_event_shape(parameter$prior$event_shape)
.
Other sts-functions:
sts_build_factored_surrogate_posterior()
,
sts_build_factored_variational_loss()
,
sts_decompose_by_component()
,
sts_decompose_forecast_by_component()
,
sts_fit_with_hmc()
,
sts_forecast()
,
sts_one_step_predictive()