cdf(x) := P[X <= x]R/distribution-methods.R
tfd_cdf.RdCumulative distribution function.
Given random variable X, the cumulative distribution function cdf is:
cdf(x) := P[X <= x]
tfd_cdf(distribution, value, ...)
| distribution | The distribution being used. |
|---|---|
| value | float or double Tensor. |
| ... | Additional parameters passed to Python. |
a Tensor of shape sample_shape(x) + self$batch_shape with values of type self$dtype.
Other distribution_methods:
tfd_covariance(),
tfd_cross_entropy(),
tfd_entropy(),
tfd_kl_divergence(),
tfd_log_cdf(),
tfd_log_prob(),
tfd_log_survival_function(),
tfd_mean(),
tfd_mode(),
tfd_prob(),
tfd_quantile(),
tfd_sample(),
tfd_stddev(),
tfd_survival_function(),
tfd_variance()
# \donttest{ d <- tfd_normal(loc = c(1, 2), scale = c(1, 0.5)) x <- d %>% tfd_sample() d %>% tfd_cdf(x)#> tf.Tensor([0.23162228 0.02920183], shape=(2,), dtype=float32)# }