Variance is defined as, Var = E[(X - E[X])**2]
where X is the random variable associated with this distribution, E denotes expectation,
and Var$shape = batch_shape + event_shape
.
tfd_variance(distribution, ...)
distribution | The distribution being used. |
---|---|
... | Additional parameters passed to Python. |
a Tensor of shape sample_shape(x) + self$batch_shape
with values of type self$dtype
.
Other distribution_methods:
tfd_cdf()
,
tfd_covariance()
,
tfd_cross_entropy()
,
tfd_entropy()
,
tfd_kl_divergence()
,
tfd_log_cdf()
,
tfd_log_prob()
,
tfd_log_survival_function()
,
tfd_mean()
,
tfd_mode()
,
tfd_prob()
,
tfd_quantile()
,
tfd_sample()
,
tfd_stddev()
,
tfd_survival_function()
#> tf.Tensor([1. 0.25], shape=(2,), dtype=float32)# }