Given random variable X, the survival function is defined: tfd_log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ]

tfd_log_survival_function(distribution, value, ...)

Arguments

distribution

The distribution being used.

value

float or double Tensor.

...

Additional parameters passed to Python.

Value

a Tensor of shape sample_shape(x) + self$batch_shape with values of type self$dtype.

Details

Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1.

See also

Examples

# \donttest{ d <- tfd_normal(loc = c(1, 2), scale = c(1, 0.5)) x <- d %>% tfd_sample() d %>% tfd_log_survival_function(x)
#> tf.Tensor([-0.08539618 -2.3711767 ], shape=(2,), dtype=float32)
# }