Given random variable X, the survival function is defined:
tfd_log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ]
tfd_log_survival_function(distribution, value, ...)
distribution | The distribution being used. |
---|---|
value | float or double Tensor. |
... | Additional parameters passed to Python. |
a Tensor of shape sample_shape(x) + self$batch_shape
with values of type self$dtype
.
Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1.
Other distribution_methods:
tfd_cdf()
,
tfd_covariance()
,
tfd_cross_entropy()
,
tfd_entropy()
,
tfd_kl_divergence()
,
tfd_log_cdf()
,
tfd_log_prob()
,
tfd_mean()
,
tfd_mode()
,
tfd_prob()
,
tfd_quantile()
,
tfd_sample()
,
tfd_stddev()
,
tfd_survival_function()
,
tfd_variance()
# \donttest{ d <- tfd_normal(loc = c(1, 2), scale = c(1, 0.5)) x <- d %>% tfd_sample() d %>% tfd_log_survival_function(x)#> tf.Tensor([-0.08539618 -2.3711767 ], shape=(2,), dtype=float32)# }