The Empirical distribution is parameterized by a (batch) multiset of samples. It describes the empirical measure (observations) of a variable. Note: some methods (log_prob, prob, cdf, mode, entropy) are not differentiable with regard to samples.
tfd_empirical( samples, event_ndims = 0, validate_args = FALSE, allow_nan_stats = TRUE, name = "Empirical" )
samples | Numeric |
---|---|
event_ndims |
|
validate_args | Logical, default FALSE. When TRUE distribution parameters are checked for validity despite possibly degrading runtime performance. When FALSE invalid inputs may silently render incorrect outputs. Default value: FALSE. |
allow_nan_stats | Logical, default TRUE. When TRUE, statistics (e.g., mean, mode, variance) use the value NaN to indicate the result is undefined. When FALSE, an exception is raised if one or more of the statistic's batch members are undefined. |
name | name prefixed to Ops created by this class. |
a distribution instance.
Mathematical Details
The probability mass function (pmf) and cumulative distribution function (cdf) are
pmf(k; s1, ..., sn) = sum_i I(k)^{k == si} / n I(k)^{k == si} == 1, if k == si, else 0. cdf(k; s1, ..., sn) = sum_i I(k)^{k >= si} / n I(k)^{k >= si} == 1, if k >= si, else 0.
For usage examples see e.g. tfd_sample()
, tfd_log_prob()
, tfd_mean()
.
Other distributions:
tfd_autoregressive()
,
tfd_batch_reshape()
,
tfd_bates()
,
tfd_bernoulli()
,
tfd_beta_binomial()
,
tfd_beta()
,
tfd_binomial()
,
tfd_categorical()
,
tfd_cauchy()
,
tfd_chi2()
,
tfd_chi()
,
tfd_cholesky_lkj()
,
tfd_continuous_bernoulli()
,
tfd_deterministic()
,
tfd_dirichlet_multinomial()
,
tfd_dirichlet()
,
tfd_exp_gamma()
,
tfd_exp_inverse_gamma()
,
tfd_exponential()
,
tfd_gamma_gamma()
,
tfd_gamma()
,
tfd_gaussian_process_regression_model()
,
tfd_gaussian_process()
,
tfd_generalized_normal()
,
tfd_geometric()
,
tfd_gumbel()
,
tfd_half_cauchy()
,
tfd_half_normal()
,
tfd_hidden_markov_model()
,
tfd_horseshoe()
,
tfd_independent()
,
tfd_inverse_gamma()
,
tfd_inverse_gaussian()
,
tfd_johnson_s_u()
,
tfd_joint_distribution_named_auto_batched()
,
tfd_joint_distribution_named()
,
tfd_joint_distribution_sequential_auto_batched()
,
tfd_joint_distribution_sequential()
,
tfd_kumaraswamy()
,
tfd_laplace()
,
tfd_linear_gaussian_state_space_model()
,
tfd_lkj()
,
tfd_log_logistic()
,
tfd_log_normal()
,
tfd_logistic()
,
tfd_mixture_same_family()
,
tfd_mixture()
,
tfd_multinomial()
,
tfd_multivariate_normal_diag_plus_low_rank()
,
tfd_multivariate_normal_diag()
,
tfd_multivariate_normal_full_covariance()
,
tfd_multivariate_normal_linear_operator()
,
tfd_multivariate_normal_tri_l()
,
tfd_multivariate_student_t_linear_operator()
,
tfd_negative_binomial()
,
tfd_normal()
,
tfd_one_hot_categorical()
,
tfd_pareto()
,
tfd_pixel_cnn()
,
tfd_poisson_log_normal_quadrature_compound()
,
tfd_poisson()
,
tfd_power_spherical()
,
tfd_probit_bernoulli()
,
tfd_quantized()
,
tfd_relaxed_bernoulli()
,
tfd_relaxed_one_hot_categorical()
,
tfd_sample_distribution()
,
tfd_sinh_arcsinh()
,
tfd_skellam()
,
tfd_spherical_uniform()
,
tfd_student_t_process()
,
tfd_student_t()
,
tfd_transformed_distribution()
,
tfd_triangular()
,
tfd_truncated_cauchy()
,
tfd_truncated_normal()
,
tfd_uniform()
,
tfd_variational_gaussian_process()
,
tfd_vector_diffeomixture()
,
tfd_vector_exponential_diag()
,
tfd_vector_exponential_linear_operator()
,
tfd_vector_laplace_diag()
,
tfd_vector_laplace_linear_operator()
,
tfd_vector_sinh_arcsinh_diag()
,
tfd_von_mises_fisher()
,
tfd_von_mises()
,
tfd_weibull()
,
tfd_wishart_linear_operator()
,
tfd_wishart_tri_l()
,
tfd_wishart()
,
tfd_zipf()