The categorical distribution is parameterized by the log-probabilities of a set of classes. The difference between OneHotCategorical and Categorical distributions is that OneHotCategorical is a discrete distribution over one-hot bit vectors whereas Categorical is a discrete distribution over positive integers. OneHotCategorical is equivalent to Categorical except Categorical has event_dim=() while OneHotCategorical has event_dim=K, where K is the number of classes.

  logits = NULL,
  probs = NULL,
  dtype = tf$int32,
  validate_args = FALSE,
  allow_nan_stats = TRUE,
  name = "OneHotCategorical"



An N-D Tensor, N >= 1, representing the log probabilities of a set of Categorical distributions. The first N - 1 dimensions index into a batch of independent distributions and the last dimension represents a vector of logits for each class. Only one of logits or probs should be passed in.


An N-D Tensor, N >= 1, representing the probabilities of a set of Categorical distributions. The first N - 1 dimensions index into a batch of independent distributions and the last dimension represents a vector of probabilities for each class. Only one of logits or probs should be passed in.


The type of the event samples (default: int32).


Logical, default FALSE. When TRUE distribution parameters are checked for validity despite possibly degrading runtime performance. When FALSE invalid inputs may silently render incorrect outputs. Default value: FALSE.


Logical, default TRUE. When TRUE, statistics (e.g., mean, mode, variance) use the value NaN to indicate the result is undefined. When FALSE, an exception is raised if one or more of the statistic's batch members are undefined.


name prefixed to Ops created by this class.


a distribution instance.


This class provides methods to create indexed batches of OneHotCategorical distributions. If the provided logits or probs is rank 2 or higher, for every fixed set of leading dimensions, the last dimension represents one single OneHotCategorical distribution. When calling distribution functions (e.g. dist.prob(x)), logits and x are broadcast to the same shape (if possible). In all cases, the last dimension of logits, x represents single OneHotCategorical distributions.

See also

For usage examples see e.g. tfd_sample(), tfd_log_prob(), tfd_mean().

Other distributions: tfd_autoregressive(), tfd_batch_reshape(), tfd_bates(), tfd_bernoulli(), tfd_beta_binomial(), tfd_beta(), tfd_binomial(), tfd_categorical(), tfd_cauchy(), tfd_chi2(), tfd_chi(), tfd_cholesky_lkj(), tfd_continuous_bernoulli(), tfd_deterministic(), tfd_dirichlet_multinomial(), tfd_dirichlet(), tfd_empirical(), tfd_exp_gamma(), tfd_exp_inverse_gamma(), tfd_exponential(), tfd_gamma_gamma(), tfd_gamma(), tfd_gaussian_process_regression_model(), tfd_gaussian_process(), tfd_generalized_normal(), tfd_geometric(), tfd_gumbel(), tfd_half_cauchy(), tfd_half_normal(), tfd_hidden_markov_model(), tfd_horseshoe(), tfd_independent(), tfd_inverse_gamma(), tfd_inverse_gaussian(), tfd_johnson_s_u(), tfd_joint_distribution_named_auto_batched(), tfd_joint_distribution_named(), tfd_joint_distribution_sequential_auto_batched(), tfd_joint_distribution_sequential(), tfd_kumaraswamy(), tfd_laplace(), tfd_linear_gaussian_state_space_model(), tfd_lkj(), tfd_log_logistic(), tfd_log_normal(), tfd_logistic(), tfd_mixture_same_family(), tfd_mixture(), tfd_multinomial(), tfd_multivariate_normal_diag_plus_low_rank(), tfd_multivariate_normal_diag(), tfd_multivariate_normal_full_covariance(), tfd_multivariate_normal_linear_operator(), tfd_multivariate_normal_tri_l(), tfd_multivariate_student_t_linear_operator(), tfd_negative_binomial(), tfd_normal(), tfd_pareto(), tfd_pixel_cnn(), tfd_poisson_log_normal_quadrature_compound(), tfd_poisson(), tfd_power_spherical(), tfd_probit_bernoulli(), tfd_quantized(), tfd_relaxed_bernoulli(), tfd_relaxed_one_hot_categorical(), tfd_sample_distribution(), tfd_sinh_arcsinh(), tfd_skellam(), tfd_spherical_uniform(), tfd_student_t_process(), tfd_student_t(), tfd_transformed_distribution(), tfd_triangular(), tfd_truncated_cauchy(), tfd_truncated_normal(), tfd_uniform(), tfd_variational_gaussian_process(), tfd_vector_diffeomixture(), tfd_vector_exponential_diag(), tfd_vector_exponential_linear_operator(), tfd_vector_laplace_diag(), tfd_vector_laplace_linear_operator(), tfd_vector_sinh_arcsinh_diag(), tfd_von_mises_fisher(), tfd_von_mises(), tfd_weibull(), tfd_wishart_linear_operator(), tfd_wishart_tri_l(), tfd_wishart(), tfd_zipf()