The Gamma distribution is defined over positive real numbers using parameters concentration (aka "alpha") and rate (aka "beta").

tfd_gamma(
concentration,
rate,
validate_args = FALSE,
allow_nan_stats = TRUE,
name = "Gamma"
)

## Arguments

concentration Floating point tensor, the concentration params of the distribution(s). Must contain only positive values. Floating point tensor, the inverse scale params of the distribution(s). Must contain only positive values. Logical, default FALSE. When TRUE distribution parameters are checked for validity despite possibly degrading runtime performance. When FALSE invalid inputs may silently render incorrect outputs. Default value: FALSE. Logical, default TRUE. When TRUE, statistics (e.g., mean, mode, variance) use the value NaN to indicate the result is undefined. When FALSE, an exception is raised if one or more of the statistic's batch members are undefined. name prefixed to Ops created by this class.

## Value

a distribution instance.

## Details

Mathematical Details

The probability density function (pdf) is,

pdf(x; alpha, beta, x > 0) = x**(alpha - 1) exp(-x beta) / Z
Z = Gamma(alpha) beta**(-alpha)


where

• concentration = alpha, alpha > 0,

• rate = beta, beta > 0,

• Z is the normalizing constant, and,

• Gamma is the gamma function.

The cumulative density function (cdf) is,

cdf(x; alpha, beta, x > 0) = GammaInc(alpha, beta x) / Gamma(alpha)


where GammaInc is the lower incomplete Gamma function. The parameters can be intuited via their relationship to mean and stddev,

concentration = alpha = (mean / stddev)**2
rate = beta = mean / stddev**2 = concentration / mean


Distribution parameters are automatically broadcast in all functions; see examples for details.

Warning: The samples of this distribution are always non-negative. However, the samples that are smaller than np$finfo(dtype)$tiny are rounded to this value, so it appears more often than it should. This should only be noticeable when the concentration is very small, or the rate is very large. See note in tf\$random_gamma docstring. Samples of this distribution are reparameterized (pathwise differentiable). The derivatives are computed using the approach described in the paper Michael Figurnov, Shakir Mohamed, Andriy Mnih. Implicit Reparameterization Gradients, 2018

For usage examples see e.g. tfd_sample(), tfd_log_prob(), tfd_mean().
Other distributions: tfd_autoregressive(), tfd_batch_reshape(), tfd_bates(), tfd_bernoulli(), tfd_beta_binomial(), tfd_beta(), tfd_binomial(), tfd_categorical(), tfd_cauchy(), tfd_chi2(), tfd_chi(), tfd_cholesky_lkj(), tfd_continuous_bernoulli(), tfd_deterministic(), tfd_dirichlet_multinomial(), tfd_dirichlet(), tfd_empirical(), tfd_exp_gamma(), tfd_exp_inverse_gamma(), tfd_exponential(), tfd_gamma_gamma(), tfd_gaussian_process_regression_model(), tfd_gaussian_process(), tfd_generalized_normal(), tfd_geometric(), tfd_gumbel(), tfd_half_cauchy(), tfd_half_normal(), tfd_hidden_markov_model(), tfd_horseshoe(), tfd_independent(), tfd_inverse_gamma(), tfd_inverse_gaussian(), tfd_johnson_s_u(), tfd_joint_distribution_named_auto_batched(), tfd_joint_distribution_named(), tfd_joint_distribution_sequential_auto_batched(), tfd_joint_distribution_sequential(), tfd_kumaraswamy(), tfd_laplace(), tfd_linear_gaussian_state_space_model(), tfd_lkj(), tfd_log_logistic(), tfd_log_normal(), tfd_logistic(), tfd_mixture_same_family(), tfd_mixture(), tfd_multinomial(), tfd_multivariate_normal_diag_plus_low_rank(), tfd_multivariate_normal_diag(), tfd_multivariate_normal_full_covariance(), tfd_multivariate_normal_linear_operator(), tfd_multivariate_normal_tri_l(), tfd_multivariate_student_t_linear_operator(), tfd_negative_binomial(), tfd_normal(), tfd_one_hot_categorical(), tfd_pareto(), tfd_pixel_cnn(), tfd_poisson_log_normal_quadrature_compound(), tfd_poisson(), tfd_power_spherical(), tfd_probit_bernoulli(), tfd_quantized(), tfd_relaxed_bernoulli(), tfd_relaxed_one_hot_categorical(), tfd_sample_distribution(), tfd_sinh_arcsinh(), tfd_skellam(), tfd_spherical_uniform(), tfd_student_t_process(), tfd_student_t(), tfd_transformed_distribution(), tfd_triangular(), tfd_truncated_cauchy(), tfd_truncated_normal(), tfd_uniform(), tfd_variational_gaussian_process(), tfd_vector_diffeomixture(), tfd_vector_exponential_diag(), tfd_vector_exponential_linear_operator(), tfd_vector_laplace_diag(), tfd_vector_laplace_linear_operator(), tfd_vector_sinh_arcsinh_diag(), tfd_von_mises_fisher(), tfd_von_mises(), tfd_weibull(), tfd_wishart_linear_operator(), tfd_wishart_tri_l(), tfd_wishart(), tfd_zipf()