Definition in Terms of Sampling

tfd_quantized(
distribution,
low = NULL,
high = NULL,
validate_args = FALSE,
name = "QuantizedDistribution"
)

## Arguments

distribution The base distribution class to transform. Typically an instance of Distribution. Tensor with same dtype as this distribution and shape able to be added to samples. Should be a whole number. Default NULL. If provided, base distribution's prob should be defined at low. Tensor with same dtype as this distribution and shape able to be added to samples. Should be a whole number. Default NULL. If provided, base distribution's prob should be defined at high - 1. high must be strictly greater than low. Logical, default FALSE. When TRUE distribution parameters are checked for validity despite possibly degrading runtime performance. When FALSE invalid inputs may silently render incorrect outputs. Default value: FALSE. name prefixed to Ops created by this class.

## Value

a distribution instance.

## Details

1. Draw X
2. Set Y <-- ceiling(X)
3. If Y < low, reset Y <-- low
4. If Y > high, reset Y <-- high
5. Return Y


Definition in Terms of the Probability Mass Function

Given scalar random variable X, we define a discrete random variable Y supported on the integers as follows:

P[Y = j] := P[X <= low],  if j == low,
:= P[X > high - 1],  j == high,
:= 0, if j < low or j > high,
:= P[j - 1 < X <= j],  all other j.


Conceptually, without cutoffs, the quantization process partitions the real line R into half open intervals, and identifies an integer j with the right endpoints:

R = ... (-2, -1](-1, 0](0, 1](1, 2](2, 3](3, 4] ...
j = ...      -1      0     1     2     3     4  ...


P[Y = j] is the mass of X within the jth interval. If low = 0, and high = 2, then the intervals are redrawn and j is re-assigned:

R = (-infty, 0](0, 1](1, infty)
j =          0     1     2


P[Y = j] is still the mass of X within the jth interval.

@section References:

For usage examples see e.g. tfd_sample(), tfd_log_prob(), tfd_mean().

Other distributions: tfd_autoregressive(), tfd_batch_reshape(), tfd_bates(), tfd_bernoulli(), tfd_beta_binomial(), tfd_beta(), tfd_binomial(), tfd_categorical(), tfd_cauchy(), tfd_chi2(), tfd_chi(), tfd_cholesky_lkj(), tfd_continuous_bernoulli(), tfd_deterministic(), tfd_dirichlet_multinomial(), tfd_dirichlet(), tfd_empirical(), tfd_exp_gamma(), tfd_exp_inverse_gamma(), tfd_exponential(), tfd_gamma_gamma(), tfd_gamma(), tfd_gaussian_process_regression_model(), tfd_gaussian_process(), tfd_generalized_normal(), tfd_geometric(), tfd_gumbel(), tfd_half_cauchy(), tfd_half_normal(), tfd_hidden_markov_model(), tfd_horseshoe(), tfd_independent(), tfd_inverse_gamma(), tfd_inverse_gaussian(), tfd_johnson_s_u(), tfd_joint_distribution_named_auto_batched(), tfd_joint_distribution_named(), tfd_joint_distribution_sequential_auto_batched(), tfd_joint_distribution_sequential(), tfd_kumaraswamy(), tfd_laplace(), tfd_linear_gaussian_state_space_model(), tfd_lkj(), tfd_log_logistic(), tfd_log_normal(), tfd_logistic(), tfd_mixture_same_family(), tfd_mixture(), tfd_multinomial(), tfd_multivariate_normal_diag_plus_low_rank(), tfd_multivariate_normal_diag(), tfd_multivariate_normal_full_covariance(), tfd_multivariate_normal_linear_operator(), tfd_multivariate_normal_tri_l(), tfd_multivariate_student_t_linear_operator(), tfd_negative_binomial(), tfd_normal(), tfd_one_hot_categorical(), tfd_pareto(), tfd_pixel_cnn(), tfd_poisson_log_normal_quadrature_compound(), tfd_poisson(), tfd_power_spherical(), tfd_probit_bernoulli(), tfd_relaxed_bernoulli(), tfd_relaxed_one_hot_categorical(), tfd_sample_distribution(), tfd_sinh_arcsinh(), tfd_skellam(), tfd_spherical_uniform(), tfd_student_t_process(), tfd_student_t(), tfd_transformed_distribution(), tfd_triangular(), tfd_truncated_cauchy(), tfd_truncated_normal(), tfd_uniform(), tfd_variational_gaussian_process(), tfd_vector_diffeomixture(), tfd_vector_exponential_diag(), tfd_vector_exponential_linear_operator(), tfd_vector_laplace_diag(), tfd_vector_laplace_linear_operator(), tfd_vector_sinh_arcsinh_diag(), tfd_von_mises_fisher(), tfd_von_mises(), tfd_weibull(), tfd_wishart_linear_operator(), tfd_wishart_tri_l(), tfd_wishart(), tfd_zipf()