Y = ceiling(X)R/distributions.R
tfd_quantized.RdDefinition in Terms of Sampling
tfd_quantized( distribution, low = NULL, high = NULL, validate_args = FALSE, name = "QuantizedDistribution" )
| distribution | The base distribution class to transform. Typically an
instance of |
|---|---|
| low |
|
| high |
|
| validate_args | Logical, default FALSE. When TRUE distribution parameters are checked for validity despite possibly degrading runtime performance. When FALSE invalid inputs may silently render incorrect outputs. Default value: FALSE. |
| name | name prefixed to Ops created by this class. |
a distribution instance.
1. Draw X 2. Set Y <-- ceiling(X) 3. If Y < low, reset Y <-- low 4. If Y > high, reset Y <-- high 5. Return Y
Definition in Terms of the Probability Mass Function
Given scalar random variable X, we define a discrete random variable Y
supported on the integers as follows:
P[Y = j] := P[X <= low], if j == low,
:= P[X > high - 1], j == high,
:= 0, if j < low or j > high,
:= P[j - 1 < X <= j], all other j.
Conceptually, without cutoffs, the quantization process partitions the real
line R into half open intervals, and identifies an integer j with the
right endpoints:
R = ... (-2, -1](-1, 0](0, 1](1, 2](2, 3](3, 4] ... j = ... -1 0 1 2 3 4 ...
P[Y = j] is the mass of X within the jth interval.
If low = 0, and high = 2, then the intervals are redrawn
and j is re-assigned:
R = (-infty, 0](0, 1](1, infty) j = 0 1 2
P[Y = j] is still the mass of X within the jth interval.
@section References:
For usage examples see e.g. tfd_sample(), tfd_log_prob(), tfd_mean().
Other distributions:
tfd_autoregressive(),
tfd_batch_reshape(),
tfd_bates(),
tfd_bernoulli(),
tfd_beta_binomial(),
tfd_beta(),
tfd_binomial(),
tfd_categorical(),
tfd_cauchy(),
tfd_chi2(),
tfd_chi(),
tfd_cholesky_lkj(),
tfd_continuous_bernoulli(),
tfd_deterministic(),
tfd_dirichlet_multinomial(),
tfd_dirichlet(),
tfd_empirical(),
tfd_exp_gamma(),
tfd_exp_inverse_gamma(),
tfd_exponential(),
tfd_gamma_gamma(),
tfd_gamma(),
tfd_gaussian_process_regression_model(),
tfd_gaussian_process(),
tfd_generalized_normal(),
tfd_geometric(),
tfd_gumbel(),
tfd_half_cauchy(),
tfd_half_normal(),
tfd_hidden_markov_model(),
tfd_horseshoe(),
tfd_independent(),
tfd_inverse_gamma(),
tfd_inverse_gaussian(),
tfd_johnson_s_u(),
tfd_joint_distribution_named_auto_batched(),
tfd_joint_distribution_named(),
tfd_joint_distribution_sequential_auto_batched(),
tfd_joint_distribution_sequential(),
tfd_kumaraswamy(),
tfd_laplace(),
tfd_linear_gaussian_state_space_model(),
tfd_lkj(),
tfd_log_logistic(),
tfd_log_normal(),
tfd_logistic(),
tfd_mixture_same_family(),
tfd_mixture(),
tfd_multinomial(),
tfd_multivariate_normal_diag_plus_low_rank(),
tfd_multivariate_normal_diag(),
tfd_multivariate_normal_full_covariance(),
tfd_multivariate_normal_linear_operator(),
tfd_multivariate_normal_tri_l(),
tfd_multivariate_student_t_linear_operator(),
tfd_negative_binomial(),
tfd_normal(),
tfd_one_hot_categorical(),
tfd_pareto(),
tfd_pixel_cnn(),
tfd_poisson_log_normal_quadrature_compound(),
tfd_poisson(),
tfd_power_spherical(),
tfd_probit_bernoulli(),
tfd_relaxed_bernoulli(),
tfd_relaxed_one_hot_categorical(),
tfd_sample_distribution(),
tfd_sinh_arcsinh(),
tfd_skellam(),
tfd_spherical_uniform(),
tfd_student_t_process(),
tfd_student_t(),
tfd_transformed_distribution(),
tfd_triangular(),
tfd_truncated_cauchy(),
tfd_truncated_normal(),
tfd_uniform(),
tfd_variational_gaussian_process(),
tfd_vector_diffeomixture(),
tfd_vector_exponential_diag(),
tfd_vector_exponential_linear_operator(),
tfd_vector_laplace_diag(),
tfd_vector_laplace_linear_operator(),
tfd_vector_sinh_arcsinh_diag(),
tfd_von_mises_fisher(),
tfd_von_mises(),
tfd_weibull(),
tfd_wishart_linear_operator(),
tfd_wishart_tri_l(),
tfd_wishart(),
tfd_zipf()