A Csiszar-function is a member of F = { f:R_+ to R : f convex }.
vi_amari_alpha(logu, alpha = 1, self_normalized = FALSE, name = NULL)
| logu |
|
|---|---|
| alpha |
|
| self_normalized |
|
| name | name prefixed to Ops created by this function. |
amari_alpha_of_u float-like Tensor of the Csiszar-function evaluated
at u = exp(logu).
When self_normalized = TRUE, the Amari-alpha Csiszar-function is:
f(u) = { -log(u) + (u - 1)}, alpha = 0
{ u log(u) - (u - 1)}, alpha = 1
{ ((u^alpha - 1) - alpha (u - 1) / (alpha (alpha - 1))}, otherwise
When self_normalized = FALSE the (u - 1) terms are omitted.
Warning: when alpha != 0 and/or self_normalized = True this function makes
non-log-space calculations and may therefore be numerically unstable for
|logu| >> 0.
A. Cichocki and S. Amari. "Families of Alpha-Beta-and GammaDivergences: Flexible and Robust Measures of Similarities." Entropy, vol. 12, no. 6, pp. 1532-1568, 2010.
Other vi-functions:
vi_arithmetic_geometric(),
vi_chi_square(),
vi_csiszar_vimco(),
vi_dual_csiszar_function(),
vi_fit_surrogate_posterior(),
vi_jeffreys(),
vi_jensen_shannon(),
vi_kl_forward(),
vi_kl_reverse(),
vi_log1p_abs(),
vi_modified_gan(),
vi_monte_carlo_variational_loss(),
vi_pearson(),
vi_squared_hellinger(),
vi_symmetrized_csiszar_function()