A Csiszar-function is a member of F = { f:R_+ to R : f convex }
.
vi_amari_alpha(logu, alpha = 1, self_normalized = FALSE, name = NULL)
logu |
|
---|---|
alpha |
|
self_normalized |
|
name | name prefixed to Ops created by this function. |
amari_alpha_of_u float
-like Tensor
of the Csiszar-function evaluated
at u = exp(logu)
.
When self_normalized = TRUE
, the Amari-alpha Csiszar-function is:
f(u) = { -log(u) + (u - 1)}, alpha = 0 { u log(u) - (u - 1)}, alpha = 1 { ((u^alpha - 1) - alpha (u - 1) / (alpha (alpha - 1))}, otherwise
When self_normalized = FALSE
the (u - 1)
terms are omitted.
Warning: when alpha != 0
and/or self_normalized = True
this function makes
non-log-space calculations and may therefore be numerically unstable for
|logu| >> 0
.
A. Cichocki and S. Amari. "Families of Alpha-Beta-and GammaDivergences: Flexible and Robust Measures of Similarities." Entropy, vol. 12, no. 6, pp. 1532-1568, 2010.
Other vi-functions:
vi_arithmetic_geometric()
,
vi_chi_square()
,
vi_csiszar_vimco()
,
vi_dual_csiszar_function()
,
vi_fit_surrogate_posterior()
,
vi_jeffreys()
,
vi_jensen_shannon()
,
vi_kl_forward()
,
vi_kl_reverse()
,
vi_log1p_abs()
,
vi_modified_gan()
,
vi_monte_carlo_variational_loss()
,
vi_pearson()
,
vi_squared_hellinger()
,
vi_symmetrized_csiszar_function()