R/vi-functions.R
vi_symmetrized_csiszar_function.RdA Csiszar-function is a member of F = { f:R_+ to R : f convex }.
vi_symmetrized_csiszar_function(logu, csiszar_function, name = NULL)
| logu |
|
|---|---|
| csiszar_function | function representing a Csiszar-function over log-domain. |
| name | name prefixed to Ops created by this function. |
symmetrized_g_of_u: float-like Tensor of the result of applying the
symmetrization of g evaluated at u = exp(logu).
The symmetrized Csiszar-function is defined as:
f_g(u) = 0.5 g(u) + 0.5 u g (1 / u)
where g is some other Csiszar-function.
We say the function is "symmetrized" because:
D_{f_g}[p, q] = D_{f_g}[q, p]
for all p << >> q (i.e., support(p) = support(q)).
There exists alternatives for symmetrizing a Csiszar-function. For example,
f_g(u) = max(f(u), f^*(u)),
where f^* is the dual Csiszar-function, also implies a symmetric
f-Divergence.
Example: When either of the following functions are symmetrized, we obtain the Jensen-Shannon Csiszar-function, i.e.,
g(u) = -log(u) - (1 + u) log((1 + u) / 2) + u - 1 h(u) = log(4) + 2 u log(u / (1 + u))
implies,
f_g(u) = f_h(u) = u log(u) - (1 + u) log((1 + u) / 2) = jensen_shannon(log(u)).
Warning: this function makes non-log-space calculations and may therefore be
numerically unstable for |logu| >> 0.
Other vi-functions:
vi_amari_alpha(),
vi_arithmetic_geometric(),
vi_chi_square(),
vi_csiszar_vimco(),
vi_dual_csiszar_function(),
vi_fit_surrogate_posterior(),
vi_jeffreys(),
vi_jensen_shannon(),
vi_kl_forward(),
vi_kl_reverse(),
vi_log1p_abs(),
vi_modified_gan(),
vi_monte_carlo_variational_loss(),
vi_pearson(),
vi_squared_hellinger()