R/vi-functions.R
vi_kl_forward.Rd
A Csiszar-function is a member of F = { f:R_+ to R : f convex }
.
vi_kl_forward(logu, self_normalized = FALSE, name = NULL)
logu |
|
---|---|
self_normalized |
|
name | name prefixed to Ops created by this function. |
kl_forward_of_u: float
-like Tensor
of the Csiszar-function evaluated at
u = exp(logu)
.
When self_normalized = TRUE
, the KL-reverse Csiszar-function is f(u) = u log(u) - (u - 1)
.
When self_normalized = FALSE
the (u - 1)
term is omitted.
Observe that as an f-Divergence, this Csiszar-function implies: D_f[p, q] = KL[q, p]
The KL is "forward" because in maximum likelihood we think of minimizing q
as in KL[p, q]
.
Warning: when self_normalized = Truethis function makes non-log-space calculations and may therefore be numerically unstable for
|logu| >> 0`.
Other vi-functions:
vi_amari_alpha()
,
vi_arithmetic_geometric()
,
vi_chi_square()
,
vi_csiszar_vimco()
,
vi_dual_csiszar_function()
,
vi_fit_surrogate_posterior()
,
vi_jeffreys()
,
vi_jensen_shannon()
,
vi_kl_reverse()
,
vi_log1p_abs()
,
vi_modified_gan()
,
vi_monte_carlo_variational_loss()
,
vi_pearson()
,
vi_squared_hellinger()
,
vi_symmetrized_csiszar_function()