A Csiszar-function is a member of F = { f:R_+ to R : f convex }
.
vi_log1p_abs(logu, name = NULL)
logu |
|
---|---|
name | name prefixed to Ops created by this function. |
log1p_abs_of_u: float
-like Tensor
of the Csiszar-function
evaluated at u = exp(logu)
.
The Log1p-Abs Csiszar-function is:
f(u) = u**(sign(u-1)) - 1
This function is so-named because it was invented from the following recipe. Choose a convex function g such that g(0)=0 and solve for f:
log(1 + f(u)) = g(log(u)). <=> f(u) = exp(g(log(u))) - 1
That is, the graph is identically g
when y-axis is log1p
-domain and x-axis
is log
-domain.
Warning: this function makes non-log-space calculations and may
therefore be numerically unstable for |logu| >> 0
.
Other vi-functions:
vi_amari_alpha()
,
vi_arithmetic_geometric()
,
vi_chi_square()
,
vi_csiszar_vimco()
,
vi_dual_csiszar_function()
,
vi_fit_surrogate_posterior()
,
vi_jeffreys()
,
vi_jensen_shannon()
,
vi_kl_forward()
,
vi_kl_reverse()
,
vi_modified_gan()
,
vi_monte_carlo_variational_loss()
,
vi_pearson()
,
vi_squared_hellinger()
,
vi_symmetrized_csiszar_function()