A Csiszar-function is a member of F = { f:R_+ to R : f convex }
.
vi_jeffreys(logu, name = NULL)
logu |
|
---|---|
name | name prefixed to Ops created by this function. |
jeffreys_of_u: float
-like Tensor
of the Csiszar-function
evaluated at u = exp(logu)
.
The Jeffreys Csiszar-function is:
f(u) = 0.5 ( u log(u) - log(u)) = 0.5 kl_forward + 0.5 kl_reverse = symmetrized_csiszar_function(kl_reverse) = symmetrized_csiszar_function(kl_forward)
This Csiszar-function induces a symmetric f-Divergence, i.e.,
D_f[p, q] = D_f[q, p]
.
Warning: this function makes non-log-space calculations and may
therefore be numerically unstable for |logu| >> 0
.
Other vi-functions:
vi_amari_alpha()
,
vi_arithmetic_geometric()
,
vi_chi_square()
,
vi_csiszar_vimco()
,
vi_dual_csiszar_function()
,
vi_fit_surrogate_posterior()
,
vi_jensen_shannon()
,
vi_kl_forward()
,
vi_kl_reverse()
,
vi_log1p_abs()
,
vi_modified_gan()
,
vi_monte_carlo_variational_loss()
,
vi_pearson()
,
vi_squared_hellinger()
,
vi_symmetrized_csiszar_function()