Do columns in the table (and their types) match a predefined schema?
Source:R/col_schema_match.R
col_schema_match.Rd
The col_schema_match()
validation function, the expect_col_schema_match()
expectation function, and the test_col_schema_match()
test function all
work in conjunction with a col_schema
object (generated through the
col_schema()
function) to determine whether the expected schema matches
that of the target table. The validation function can be used directly on a
data table or with an agent object (technically, a ptblank_agent
object)
whereas the expectation and test functions can only be used with a data
table.
The validation step or expectation operates over a single test unit, which is
whether the schema matches that of the table (within the constraints enforced
by the complete
, in_order
, and is_exact
options). If the target table
is a tbl_dbi
or a tbl_spark
object, we can choose to validate the column
schema that is based on R column types (e.g., "numeric"
, "character"
,
etc.), SQL column types (e.g., "double"
, "varchar"
, etc.), or Spark SQL
types (e.g,. "DoubleType"
, "StringType"
, etc.). That option is defined in
the col_schema()
function (it is the .db_col_types
argument).
There are options to make schema checking less stringent (by default, this
validation operates with highest level of strictness). With the complete
option set to FALSE
, we can supply a col_schema
object with a partial
inclusion of columns. Using in_order
set to FALSE
means that there is no
requirement for the columns defined in the schema
object to be in the same
order as in the target table. Finally, the is_exact
option set to FALSE
means that all column classes/types don't have to be provided for a
particular column. It can even be NULL
, skipping the check of the column
type.
Usage
col_schema_match(
x,
schema,
complete = TRUE,
in_order = TRUE,
is_exact = TRUE,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE
)
expect_col_schema_match(
object,
schema,
complete = TRUE,
in_order = TRUE,
is_exact = TRUE,
threshold = 1
)
test_col_schema_match(
object,
schema,
complete = TRUE,
in_order = TRUE,
is_exact = TRUE,
threshold = 1
)
Arguments
- x
A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*>
// requiredA data frame, tibble (
tbl_df
ortbl_dbi
), Spark DataFrame (tbl_spark
), or, an agent object of classptblank_agent
that is commonly created withcreate_agent()
.- schema
The table schema
obj:<col_schema>
// requiredA table schema of type
col_schema
which can be generated using thecol_schema()
function.- complete
Requirement for columns specified to exist
scalar<logical>
// default:TRUE
A requirement to account for all table columns in the provided
schema
. By default, this isTRUE
and so that all column names in the target table must be present in the schema object. This restriction can be relaxed by usingFALSE
, where we can provide a subset of table columns in the schema.- in_order
Requirement for columns in a specific order
scalar<logical>
// default:TRUE
A stringent requirement for enforcing the order of columns in the provided
schema
. By default, this isTRUE
and the order of columns in both the schema and the target table must match. By setting toFALSE
, this strict order requirement is removed.- is_exact
Requirement for column types to be exactly specified
scalar<logical>
// default:TRUE
Determines whether the check for column types should be exact or even performed at all. For example, columns in R data frames may have multiple classes (e.g., a date-time column can have both the
"POSIXct"
and the"POSIXt"
classes). If usingis_exact == FALSE
, the column type in the user-defined schema for a date-time value can be set as either"POSIXct"
or"POSIXt"
and pass validation (with this column, at least). This can be taken a step further and usingNULL
for a column type in the user-defined schema will skip the validation check of a column type. By default,is_exact
is set toTRUE
.- actions
Thresholds and actions for different states
obj:<action_levels>
// default:NULL
(optional
)A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the
action_levels()
helper function.- step_id
Manual setting of the step ID value
scalar<character>
// default:NULL
(optional
)One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is
NULL
, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number ofcolumns
provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.- label
Optional label for the validation step
vector<character>
// default:NULL
(optional
)Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information.
- brief
Brief description for the validation step
scalar<character>
// default:NULL
(optional
)A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in
create_agent()
'slang
argument (which defaults to"en"
or English). The autobrief incorporates details of the validation step so it's often the preferred option in most cases (where alabel
might be better suited to succinctly describe the validation).- active
Is the validation step active?
scalar<logical>
// default:TRUE
A logical value indicating whether the validation step should be active. If the validation function is working with an agent,
FALSE
will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step withactive = FALSE
will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading~
can be used with.
(serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank functionhas_columns()
can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g.,~ . %>% has_columns(c(d, e))
).- object
A data table for expectations or tests
obj:<tbl_*>
// requiredA data frame, tibble (
tbl_df
ortbl_dbi
), or Spark DataFrame (tbl_spark
) that serves as the target table for the expectation function or the test function.- threshold
The failure threshold
scalar<integer|numeric>(val>=0)
// default:1
A simple failure threshold value for use with the expectation (
expect_
) and the test (test_
) function variants. By default, this is set to1
meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond1
indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate toTRUE
. Likewise, fractional values (between0
and1
) act as a proportional failure threshold, where0.15
means that 15 percent of failing test units results in an overall test failure.
Value
For the validation function, the return value is either a
ptblank_agent
object or a table object (depending on whether an agent
object or a table was passed to x
). The expectation function invisibly
returns its input but, in the context of testing data, the function is
called primarily for its potential side-effects (e.g., signaling failure).
The test function returns a logical value.
Supported Input Tables
The types of data tables that are officially supported are:
data frames (
data.frame
) and tibbles (tbl_df
)Spark DataFrames (
tbl_spark
)the following database tables (
tbl_dbi
):PostgreSQL tables (using the
RPostgres::Postgres()
as driver)MySQL tables (with
RMySQL::MySQL()
)Microsoft SQL Server tables (via odbc)
BigQuery tables (using
bigrquery::bigquery()
)DuckDB tables (through
duckdb::duckdb()
)SQLite (with
RSQLite::SQLite()
)
Other database tables may work to varying degrees but they haven't been formally tested (so be mindful of this when using unsupported backends with pointblank).
Actions
Often, we will want to specify actions
for the validation. This argument,
present in every validation function, takes a specially-crafted list object
that is best produced by the action_levels()
function. Read that function's
documentation for the lowdown on how to create reactions to above-threshold
failure levels in validation. The basic gist is that you'll want at least a
single threshold level (specified as either the fraction of test units
failed, or, an absolute value), often using the warn_at
argument. Using
action_levels(warn_at = 1)
or action_levels(stop_at = 1)
are good choices
depending on the situation (the first produces a warning, the other
stop()
s).
Labels
label
may be a single string or a character vector that matches the number
of expanded steps. label
also supports {glue}
syntax and exposes the
following dynamic variables contextualized to the current step:
"{.step}"
: The validation step name
The glue context also supports ordinary expressions for further flexibility
(e.g., "{toupper(.step)}"
) as long as they return a length-1 string.
Briefs
Want to describe this validation step in some detail? Keep in mind that this
is only useful if x
is an agent. If that's the case, brief
the agent
with some text that fits. Don't worry if you don't want to do it. The
autobrief protocol is kicked in when brief = NULL
and a simple brief will
then be automatically generated.
YAML
A pointblank agent can be written to YAML with yaml_write()
and the
resulting YAML can be used to regenerate an agent (with yaml_read_agent()
)
or interrogate the target table (via yaml_agent_interrogate()
). When
col_schema_match()
is represented in YAML (under the top-level steps
key
as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_schema_match()
as
a validation step is expressed in R code and in the corresponding YAML
representation.
R statement:
agent %>%
col_schema_match(
schema = col_schema(
a = "integer",
b = "character"
),
complete = FALSE,
in_order = FALSE,
is_exact = FALSE,
actions = action_levels(stop_at = 1),
label = "The `col_schema_match()` step.",
active = FALSE
)
YAML representation:
steps:
- col_schema_match:
schema:
a: integer
b: character
complete: false
in_order: false
is_exact: false
actions:
stop_count: 1.0
label: The `col_schema_match()` step.
active: false
In practice, both of these will often be shorter as only the schema
argument requires a value. Arguments with default values won't be written to
YAML when using yaml_write()
(though it is acceptable to include them with
their default when generating the YAML by other means). It is also possible
to preview the transformation of an agent to YAML without any writing to disk
by using the yaml_agent_string()
function.
Examples
For all examples here, we'll use a simple table with two columns: one
integer
(a
) and the other character
(b
). The following examples will
validate that the table columns abides match a schema object as created by
col_schema()
.
tbl <-
dplyr::tibble(
a = 1:5,
b = letters[1:5]
)
tbl
#> # A tibble: 5 x 2
#> a b
#> <int> <chr>
#> 1 1 a
#> 2 2 b
#> 3 3 c
#> 4 4 d
#> 5 5 e
Create a column schema object with the helper function col_schema()
that
describes the columns and their types (in the expected order).
schema_obj <-
col_schema(
a = "integer",
b = "character"
)
schema_obj
#> $a
#> [1] "integer"
#>
#> $b
#> [1] "character"
#>
#> attr(,"class")
#> [1] "r_type" "col_schema"
A: Using an agent
with validation functions and then interrogate()
Validate that the schema object schema_obj
exactly defines the column names
and column types. We'll determine if this validation has a failing test unit
(there is a single test unit governed by whether there is a match).
agent <-
create_agent(tbl = tbl) %>%
col_schema_match(schema = schema_obj) %>%
interrogate()
Printing the agent
in the console shows the validation report in the
Viewer. Here is an excerpt of validation report, showing the single entry
that corresponds to the validation step demonstrated here.
B: Using the validation function directly on the data (no agent
)
This way of using validation functions acts as a data filter. Data is passed
through but should stop()
if there is a single test unit failing. The
behavior of side effects can be customized with the actions
option.
tbl %>% col_schema_match(schema = schema_obj)
#> # A tibble: 5 x 2
#> a b
#> <int> <chr>
#> 1 1 a
#> 2 2 b
#> 3 3 c
#> 4 4 d
#> 5 5 e
C: Using the expectation function
With the expect_*()
form, we would typically perform one validation at a
time. This is primarily used in testthat tests.
expect_col_schema_match(tbl, scheam = schema_obj)
D: Using the test function
With the test_*()
form, we should get a single logical value returned to
us.
tbl %>% test_col_schema_match(schema = schema_obj)
#> [1] TRUE
See also
Other validation functions:
col_count_match()
,
col_exists()
,
col_is_character()
,
col_is_date()
,
col_is_factor()
,
col_is_integer()
,
col_is_logical()
,
col_is_numeric()
,
col_is_posix()
,
col_vals_between()
,
col_vals_decreasing()
,
col_vals_equal()
,
col_vals_expr()
,
col_vals_gt()
,
col_vals_gte()
,
col_vals_in_set()
,
col_vals_increasing()
,
col_vals_lt()
,
col_vals_lte()
,
col_vals_make_set()
,
col_vals_make_subset()
,
col_vals_not_between()
,
col_vals_not_equal()
,
col_vals_not_in_set()
,
col_vals_not_null()
,
col_vals_null()
,
col_vals_regex()
,
col_vals_within_spec()
,
conjointly()
,
row_count_match()
,
rows_complete()
,
rows_distinct()
,
serially()
,
specially()
,
tbl_match()