R/sts.R
sts_dynamic_linear_regression.RdThe dynamic linear regression model is a special case of a linear Gaussian SSM
and a generalization of typical (static) linear regression. The model
represents regression weights with a latent state which evolves via a
Gaussian random walk:
sts_dynamic_linear_regression( observed_time_series = NULL, design_matrix, drift_scale_prior = NULL, initial_weights_prior = NULL, name = NULL )
| observed_time_series | optional |
|---|---|
| design_matrix | float |
| drift_scale_prior | instance of |
| initial_weights_prior | instance of |
| name | the name of this component. Default value: 'DynamicLinearRegression'. |
an instance of StructuralTimeSeries.
weights[t] ~ Normal(weights[t-1], drift_scale)
The latent state has dimension num_features, while the parameters
drift_scale and observation_noise_scale are each (a batch of) scalars. The
batch shape of this distribution is the broadcast batch shape of these
parameters, the initial_state_prior, and the design_matrix.
num_features is determined from the last dimension of design_matrix (equivalent to the
number of columns in the design matrix in linear regression).
For usage examples see sts_fit_with_hmc(), sts_forecast(), sts_decompose_by_component().
Other sts:
sts_additive_state_space_model(),
sts_autoregressive_state_space_model(),
sts_autoregressive(),
sts_constrained_seasonal_state_space_model(),
sts_dynamic_linear_regression_state_space_model(),
sts_linear_regression(),
sts_local_level_state_space_model(),
sts_local_level(),
sts_local_linear_trend_state_space_model(),
sts_local_linear_trend(),
sts_seasonal_state_space_model(),
sts_seasonal(),
sts_semi_local_linear_trend_state_space_model(),
sts_semi_local_linear_trend(),
sts_smooth_seasonal_state_space_model(),
sts_smooth_seasonal(),
sts_sparse_linear_regression(),
sts_sum()