R/sts.R
sts_dynamic_linear_regression.Rd
The dynamic linear regression model is a special case of a linear Gaussian SSM
and a generalization of typical (static) linear regression. The model
represents regression weights
with a latent state which evolves via a
Gaussian random walk:
sts_dynamic_linear_regression( observed_time_series = NULL, design_matrix, drift_scale_prior = NULL, initial_weights_prior = NULL, name = NULL )
observed_time_series | optional |
---|---|
design_matrix | float |
drift_scale_prior | instance of |
initial_weights_prior | instance of |
name | the name of this component. Default value: 'DynamicLinearRegression'. |
an instance of StructuralTimeSeries
.
weights[t] ~ Normal(weights[t-1], drift_scale)
The latent state has dimension num_features
, while the parameters
drift_scale
and observation_noise_scale
are each (a batch of) scalars. The
batch shape of this distribution is the broadcast batch shape of these
parameters, the initial_state_prior
, and the design_matrix
.
num_features
is determined from the last dimension of design_matrix
(equivalent to the
number of columns in the design matrix in linear regression).
For usage examples see sts_fit_with_hmc()
, sts_forecast()
, sts_decompose_by_component()
.
Other sts:
sts_additive_state_space_model()
,
sts_autoregressive_state_space_model()
,
sts_autoregressive()
,
sts_constrained_seasonal_state_space_model()
,
sts_dynamic_linear_regression_state_space_model()
,
sts_linear_regression()
,
sts_local_level_state_space_model()
,
sts_local_level()
,
sts_local_linear_trend_state_space_model()
,
sts_local_linear_trend()
,
sts_seasonal_state_space_model()
,
sts_seasonal()
,
sts_semi_local_linear_trend_state_space_model()
,
sts_semi_local_linear_trend()
,
sts_smooth_seasonal_state_space_model()
,
sts_smooth_seasonal()
,
sts_sparse_linear_regression()
,
sts_sum()