The local linear trend model posits a level
and slope
, each
evolving via a Gaussian random walk:
level[t] = level[t-1] + slope[t-1] + Normal(0., level_scale) slope[t] = slope[t-1] + Normal(0., slope_scale)
sts_local_linear_trend( observed_time_series = NULL, level_scale_prior = NULL, slope_scale_prior = NULL, initial_level_prior = NULL, initial_slope_prior = NULL, name = NULL )
observed_time_series | optional |
---|---|
level_scale_prior | optional |
slope_scale_prior | optional |
initial_level_prior | optional |
initial_slope_prior | optional |
name | the name of this model component. Default value: 'LocalLinearTrend'. |
an instance of StructuralTimeSeries
.
The latent state is the two-dimensional tuple [level, slope]
. At each
timestep we observe a noisy realization of the current level:
f[t] = level[t] + Normal(0., observation_noise_scale)
.
This model is appropriate for data where the trend direction and magnitude (latent
slope
) is consistent within short periods but may evolve over time.
Note that this model can produce very high uncertainty forecasts, as
uncertainty over the slope compounds quickly. If you expect your data to
have nonzero long-term trend, i.e. that slopes tend to revert to some mean,
then the SemiLocalLinearTrend
model may produce sharper forecasts.
For usage examples see sts_fit_with_hmc()
, sts_forecast()
, sts_decompose_by_component()
.
Other sts:
sts_additive_state_space_model()
,
sts_autoregressive_state_space_model()
,
sts_autoregressive()
,
sts_constrained_seasonal_state_space_model()
,
sts_dynamic_linear_regression_state_space_model()
,
sts_dynamic_linear_regression()
,
sts_linear_regression()
,
sts_local_level_state_space_model()
,
sts_local_level()
,
sts_local_linear_trend_state_space_model()
,
sts_seasonal_state_space_model()
,
sts_seasonal()
,
sts_semi_local_linear_trend_state_space_model()
,
sts_semi_local_linear_trend()
,
sts_smooth_seasonal_state_space_model()
,
sts_smooth_seasonal()
,
sts_sparse_linear_regression()
,
sts_sum()