An autoregressive (AR) model posits a latent level whose value at each step
is a noisy linear combination of previous steps:
level[t+1] = (sum(coefficients * levels[t:t-order:-1]) + Normal(0., level_scale))
sts_autoregressive( observed_time_series = NULL, order, coefficients_prior = NULL, level_scale_prior = NULL, initial_state_prior = NULL, coefficient_constraining_bijector = NULL, name = NULL )
| observed_time_series | optional |
|---|---|
| order | scalar positive |
| coefficients_prior | optional |
| level_scale_prior | optional |
| initial_state_prior | optional |
| coefficient_constraining_bijector | optional |
| name | the name of this model component. Default value: 'Autoregressive'. |
an instance of StructuralTimeSeries.
The latent state is levels[t:t-order:-1]. We observe a noisy realization of
the current level: f[t] = level[t] + Normal(0., observation_noise_scale) at
each timestep.
If coefficients=[1.], the AR process is a simple random walk, equivalent to
a LocalLevel model. However, a random walk's variance increases with time,
while many AR processes (in particular, any first-order process with
abs(coefficient) < 1) are stationary, i.e., they maintain a constant
variance over time. This makes AR processes useful models of uncertainty.
For usage examples see sts_fit_with_hmc(), sts_forecast(), sts_decompose_by_component().
Other sts:
sts_additive_state_space_model(),
sts_autoregressive_state_space_model(),
sts_constrained_seasonal_state_space_model(),
sts_dynamic_linear_regression_state_space_model(),
sts_dynamic_linear_regression(),
sts_linear_regression(),
sts_local_level_state_space_model(),
sts_local_level(),
sts_local_linear_trend_state_space_model(),
sts_local_linear_trend(),
sts_seasonal_state_space_model(),
sts_seasonal(),
sts_semi_local_linear_trend_state_space_model(),
sts_semi_local_linear_trend(),
sts_smooth_seasonal_state_space_model(),
sts_smooth_seasonal(),
sts_sparse_linear_regression(),
sts_sum()