The smooth seasonal model uses a set of trigonometric terms in order to
capture a recurring pattern whereby adjacent (in time) effects are
similar. The model uses frequencies
calculated via:
sts_smooth_seasonal( period, frequency_multipliers, allow_drift = TRUE, drift_scale_prior = NULL, initial_state_prior = NULL, observed_time_series = NULL, name = NULL )
period | positive scalar |
---|---|
frequency_multipliers | One-dimensional |
allow_drift | optional |
drift_scale_prior | optional |
initial_state_prior | instance of |
observed_time_series | optional |
name | the name of this model component. Default value: 'LocalLinearTrend'. |
an instance of StructuralTimeSeries
.
frequencies[j] = 2. * pi * frequency_multipliers[j] / period
and then posits two latent states for each frequency
. The two latent states
associated with frequency j
drift over time via:
effect[t] = (effect[t-1] * cos(frequencies[j]) + auxiliary[t-] * sin(frequencies[j]) + Normal(0., drift_scale)) auxiliary[t] = (-effect[t-1] * sin(frequencies[j]) + auxiliary[t-] * cos(frequencies[j]) + Normal(0., drift_scale))
where effect
is the smooth seasonal effect and auxiliary
only appears as a
matter of construction. The interpretation of auxiliary
is thus not
particularly important.
For usage examples see sts_fit_with_hmc()
, sts_forecast()
, sts_decompose_by_component()
.
Other sts:
sts_additive_state_space_model()
,
sts_autoregressive_state_space_model()
,
sts_autoregressive()
,
sts_constrained_seasonal_state_space_model()
,
sts_dynamic_linear_regression_state_space_model()
,
sts_dynamic_linear_regression()
,
sts_linear_regression()
,
sts_local_level_state_space_model()
,
sts_local_level()
,
sts_local_linear_trend_state_space_model()
,
sts_local_linear_trend()
,
sts_seasonal_state_space_model()
,
sts_seasonal()
,
sts_semi_local_linear_trend_state_space_model()
,
sts_semi_local_linear_trend()
,
sts_smooth_seasonal_state_space_model()
,
sts_sparse_linear_regression()
,
sts_sum()