A seasonal effect model posits a fixed set of recurring, discrete 'seasons', each of which is active for a fixed number of timesteps and, while active, contributes a different effect to the time series. These are generally not meteorological seasons, but represent regular recurring patterns such as hour-of-day or day-of-week effects. Each season lasts for a fixed number of timesteps. The effect of each season drifts from one occurrence to the next following a Gaussian random walk:
sts_seasonal( observed_time_series = NULL, num_seasons, num_steps_per_season = 1, drift_scale_prior = NULL, initial_effect_prior = NULL, constrain_mean_effect_to_zero = TRUE, name = NULL )
| observed_time_series | optional |
|---|---|
| num_seasons | Scalar |
| num_steps_per_season |
|
| drift_scale_prior | optional |
| initial_effect_prior | optional |
| constrain_mean_effect_to_zero | if |
| name | the name of this model component. Default value: 'Seasonal'. |
an instance of StructuralTimeSeries.
effects[season, occurrence[i]] = ( effects[season, occurrence[i-1]] + Normal(loc=0., scale=drift_scale))
The drift_scale parameter governs the standard deviation of the random walk;
for example, in a day-of-week model it governs the change in effect from this
Monday to next Monday.
For usage examples see sts_fit_with_hmc(), sts_forecast(), sts_decompose_by_component().
Other sts:
sts_additive_state_space_model(),
sts_autoregressive_state_space_model(),
sts_autoregressive(),
sts_constrained_seasonal_state_space_model(),
sts_dynamic_linear_regression_state_space_model(),
sts_dynamic_linear_regression(),
sts_linear_regression(),
sts_local_level_state_space_model(),
sts_local_level(),
sts_local_linear_trend_state_space_model(),
sts_local_linear_trend(),
sts_seasonal_state_space_model(),
sts_semi_local_linear_trend_state_space_model(),
sts_semi_local_linear_trend(),
sts_smooth_seasonal_state_space_model(),
sts_smooth_seasonal(),
sts_sparse_linear_regression(),
sts_sum()