The local level model posits a level evolving via a Gaussian random walk:
level[t] = level[t-1] + Normal(0., level_scale)
sts_local_level( observed_time_series = NULL, level_scale_prior = NULL, initial_level_prior = NULL, name = NULL )
| observed_time_series | optional |
|---|---|
| level_scale_prior | optional |
| initial_level_prior | optional |
| name | the name of this model component. Default value: 'LocalLevel'. |
an instance of StructuralTimeSeries.
The latent state is [level]. We observe a noisy realization of the current
level: f[t] = level[t] + Normal(0., observation_noise_scale) at each timestep.
For usage examples see sts_fit_with_hmc(), sts_forecast(), sts_decompose_by_component().
Other sts:
sts_additive_state_space_model(),
sts_autoregressive_state_space_model(),
sts_autoregressive(),
sts_constrained_seasonal_state_space_model(),
sts_dynamic_linear_regression_state_space_model(),
sts_dynamic_linear_regression(),
sts_linear_regression(),
sts_local_level_state_space_model(),
sts_local_linear_trend_state_space_model(),
sts_local_linear_trend(),
sts_seasonal_state_space_model(),
sts_seasonal(),
sts_semi_local_linear_trend_state_space_model(),
sts_semi_local_linear_trend(),
sts_smooth_seasonal_state_space_model(),
sts_smooth_seasonal(),
sts_sparse_linear_regression(),
sts_sum()